A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation. | LitMetric

Enhanced photoacoustic (PA) intensity from gold nanosphere and nanorod colloidal suspensions in water under tightly-focused femtosecond pulsed laser irradiation was systematically investigated. PA signal amplitudes were measured by ultrasound transducers at frequencies of 5, 10, and 25 MHz. The experimental results revealed a linear-dependence of the relative photoacoustic amplitude on the laser power and the mechanism was attributed to non-radiative relaxation dynamics of surface plasmon oscillations. When gold nanorod with longitudinal absorption/extinction peak at 800 nm coincides with the wavelength of femtosecond laser pulses, the most efficient PA signal is generated. Laser excitation was kept within a thermal stability region of gold nanoparticles, i.e., colloidal suspension can be continuously reused for PA generation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.014781DOI Listing

Publication Analysis

Top Keywords

femtosecond laser
8
laser excitation
8
laser
5
enhanced photoacoustics
4
gold
4
photoacoustics gold
4
gold nano-colloidal
4
nano-colloidal suspensions
4
suspensions femtosecond
4
excitation enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!