We study the quality factor of single-mode optical whispering gallery mode resonators using finite element method simulations, with a particular focus on the photonic belt resonator geometry. We experimentally observe a large difference between the quality factors of TM and TE modes in such resonators. Examining radiative losses, we conclude that the TM fundamental mode of single-mode resonators can have geometry related radiative losses caused by mode hybridization and coupling that limits their achievable quality factor. However, TE modes are free from mode hybridization radiative losses. This leads to much higher achievable Q factors for TE modes, only limited by fabrication and material quality. We experimentally observed photonic belt resonator quality factors on the order of one billion for TE modes, higher than in any other single mode optical resonator of similar dimensions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.013231DOI Listing

Publication Analysis

Top Keywords

radiative losses
12
single-mode optical
8
quality factor
8
photonic belt
8
belt resonator
8
quality factors
8
factors modes
8
mode hybridization
8
quality
5
mode
5

Similar Publications

Tailoring pyridine bridged chalcogen-concave molecules for defects passivation enables efficient and stable perovskite solar cells.

Nat Commun

January 2025

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China.

Suppressing deep-level defects at the perovskite bulk and surface is indispensable for reducing the non-radiative recombination losses and improving efficiency and stability of perovskite solar cells (PSCs). In this study, two Lewis bases based on chalcogen-thiophene (n-Bu4S) and selenophene (n-Bu4Se) having tetra-pyridine as bridge are developed to passivate defects in perovskite film. The uncoordinated Pb and iodine vacancy defects can interact with chalcogen-concave group and pyridine group through the formation of the Lewis acid-base adduct, particularly both the defects can be surrounded by concave molecules, resulting in effective suppression charge recombination.

View Article and Find Full Text PDF

Radiative Warming Glass for High-Latitude Cold Regions.

Adv Sci (Weinh)

January 2025

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.

Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.

View Article and Find Full Text PDF

Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals.

View Article and Find Full Text PDF

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

The simulation of ideal and non-ideal conditions using the SCAPS-1D simulator for novel structure Ag/FTO/CuBiO/GQD/Au was done for the first time. The recombination of charge carriers in CuBiO is an inherent problem due to very low hole mobility and polaron transport in the valence band. The in-depth analysis of the simulation result revealed that Graphene Quantum Dots (GQDs) can act as an appropriate hole transport layer (HTL) and can enhance hole transportation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!