A more than 1.5 octave-spanning mid-infrared supercontinuum (1.2 to 3.6 μm) is generated by pumping a AsS-silica "double-nanospike" waveguide via a femtosecond Cr:ZnS laser at 2.35 μm. The combination of the optimized group velocity dispersion and extremely high nonlinearity provided by the AsS-silica hybrid waveguide enables a ~100 pJ level pump pulse energy threshold for octave-spanning spectral broadening at a repetition rate of 90 MHz. Numerical simulations show that the generated supercontinuum is highly coherent over the entire spanning wavelength range. The results are important for realization of a high repetition rate octave-spanning frequency comb in the mid-infrared spectral region.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.012406DOI Listing

Publication Analysis

Top Keywords

octave-spanning mid-infrared
8
mid-infrared supercontinuum
8
femtosecond crzns
8
crzns laser
8
repetition rate
8
coherent octave-spanning
4
supercontinuum generated
4
generated ass-silica
4
ass-silica double-nanospike
4
double-nanospike waveguide
4

Similar Publications

Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators.

Front Optoelectron

November 2024

Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band.

View Article and Find Full Text PDF

This study demonstrates the potential to generate a soft x-ray single-cycle attosecond pulse using a single-cycle mid-infrared pulse from advanced dual-chirped optical parametric amplification (DC-OPA). A super continuum high harmonic (HH) spectrum was generated in argon (80-160 eV) and neon (150-270 eV). The experimental spectra reasonably agree with those calculated by the strong-field approximation model and Maxwell's equations.

View Article and Find Full Text PDF

The generation of laser pulses with controlled optical waveforms, and their measurement, lie at the heart of both time-domain and frequency-domain precision metrology. Here, we obtain mid-infrared waves via intra-pulse difference-frequency generation (IPDFG) driven by 16-femtosecond near-infrared pulses, and characterise the jitter of sub-cycle fractions of these waves relative to the gate pulses using electro-optic sampling (EOS). We demonstrate sub-attosecond temporal jitter at individual zero-crossings and sub-0.

View Article and Find Full Text PDF

The realization of compact and efficient broadband mid-infrared (MIR) lasers has enormous impacts in promoting MIR spectroscopy for various important applications. A number of well-designed waveguide platforms have been demonstrated for MIR supercontinuum and frequency comb generations based on cubic nonlinearities, but unfortunately third-order nonlinear response is inherently weak. Here, we propose and demonstrate for the first time a χ micrometer waveguide platform based on birefringence phase matching for long-wavelength infrared (LWIR) laser generation with a high quantum efficiency.

View Article and Find Full Text PDF

Widely tunable coherent sources are desirable in nanophotonics for a multitude of applications ranging from communications to sensing. The mid-infrared spectral region (wavelengths beyond 2 μm) is particularly important for applications relying on molecular spectroscopy. Among tunable sources, optical parametric oscillators typically offer some of the broadest tuning ranges; however, their implementations in nanophotonics have been limited to narrow tuning ranges in the infrared or to visible wavelengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!