Digital micromirror devices (DMD) provide a robust platform with which to implement digital holography, in principle providing the means to rapidly generate propagating transverse electromagnetic fields with arbitrary mode profiles at visible and IR wavelengths. We use a DMD to probe a Fabry-Pérot cavity in single-mode and near-degenerate confocal configurations. Pumping arbitrary modes of the cavity is possible with excellent specificity by virtue of the spatial overlap between the incident light field and the cavity mode.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.011447DOI Listing

Publication Analysis

Top Keywords

coupling modes
4
modes near-confocal
4
near-confocal optical
4
optical resonator
4
resonator digital
4
digital light
4
light modulator
4
modulator digital
4
digital micromirror
4
micromirror devices
4

Similar Publications

The recent unauthorization of antiviral drugs in food-producing animals according to Commission Delegated Regulation (EU) 2022/1644 have increased the need for food control laboratories to develop analytical methods and perform official controls. In this work, a simple and fast analytical methodology was developed for the simultaneous determination of 21 antiviral drugs in chicken muscle and liver by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Chromatographic separation was achieved by an HILIC BEH amide column; followed by detection with a electrospray ionization source in positive and negative modes.

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

Unlabelled: Ultrasound imaging plays an important role in the early detection and management of breast cancer. This study aimed to evaluate the imaging performance of a range of clinically-used breast ultrasound systems using a set of novel spherical lesion contrast-detail (C-D) and anechoic-target (A-T) phantoms.

Methods: C-D and A-T phantoms were imaged using a range of clinical breast ultrasound systems and imaging modes.

View Article and Find Full Text PDF

A Low-Profile Balanced Dielectric Resonator Filtering Power Divider with Isolation.

Micromachines (Basel)

January 2025

School of Information Science and Technology, Nantong University, Nantong 226019, China.

A balanced dielectric resonator filtering power divider with isolation performance is proposed. By using the coupling of the TE111y modes between three rectangle dielectric resonators, combined with balanced feed structures, the differential-mode filtering and power dividing functions, as well as the common-mode suppression were achieved effectively. Additionally, by technically utilizing the hollow structure of the stacked substrates, isolation resistor structures are introduced at the two output ports to improve the isolation level of the power divider.

View Article and Find Full Text PDF

Ultrathin Palladium-loaded Cuprous oxide stabilises Copper(I) to facilitate electrochemical carbon dioxide reduction reaction.

J Colloid Interface Sci

January 2025

Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Cuprous oxide (CuO) exhibit significant potential for catalytic activity in the electrochemical carbon dioxide reduction reaction (CORR). However, the rapid reduction of Copper(I) (Cu) to metallic Copper (Cu) leads to catalyst deactivation, significantly impacting product selectivity and stability. This study aims to stabilize the Cu valence state at a metal-CuO heterogeneous interface through interfacial engineering, ultimately enhancing the electrochemical CO reduction performance of CuO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!