AI Article Synopsis

  • Many toxic oxygenated hydrocarbons, like furans, are produced during combustion and significantly impact human health and climate.
  • Researchers combined computational and experimental techniques to understand how these harmful compounds form from hydrocarbon fuels, revealing new low-barrier reactions.
  • The study found that high-temperature flames produce large amounts of previously unidentified oxygenated species, changing our understanding of combustion chemistry and emissions control.

Article Abstract

Many oxygenated hydrocarbon species formed during combustion, such as furans, are highly toxic and detrimental to human health and the environment. These species may also increase the hygroscopicity of soot and strongly influence the effects of soot on regional and global climate. However, large furans and associated oxygenated species have not previously been observed in flames, and their formation mechanism and interplay with polycyclic aromatic hydrocarbons (PAHs) are poorly understood. We report on a synergistic computational and experimental effort that elucidates the formation of oxygen-embedded compounds, such as furans and other oxygenated hydrocarbons, during the combustion of hydrocarbon fuels. We used ab initio and probabilistic computational techniques to identify low-barrier reaction mechanisms for the formation of large furans and other oxygenated hydrocarbons. We used vacuum-UV photoionization aerosol mass spectrometry and X-ray photoelectron spectroscopy to confirm these predictions. We show that furans are produced in the high-temperature regions of hydrocarbon flames, where they remarkably survive and become the main functional group of oxygenates that incorporate into incipient soot. In controlled flame studies, we discovered ∼100 oxygenated species previously unaccounted for. We found that large alcohols and enols act as precursors to furans, leading to incorporation of oxygen into the carbon skeletons of PAHs. Our results depart dramatically from the crude chemistry of carbon- and oxygen-containing molecules previously considered in hydrocarbon formation and oxidation models and spearhead the emerging understanding of the oxidation chemistry that is critical, for example, to control emissions of toxic and carcinogenic combustion by-products, which also greatly affect global warming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968726PMC
http://dx.doi.org/10.1073/pnas.1604772113DOI Listing

Publication Analysis

Top Keywords

large furans
12
furans oxygenated
12
oxygenated hydrocarbons
12
oxygenated species
8
furans
7
oxygenated
6
formation
5
formation emission
4
large
4
emission large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!