We investigate ultra-broadband wavelength converters based on cascaded second-harmonic generation and difference frequency generation using Bessel-chirped gratings (BCGs) in lithium niobate waveguides, and compare them to the ones using uniform grating and segmented grating, respectively. For the same length and power, the BCGs show broader bandwidth than the other two types of grating. The ripple of the matching response is very small as well. Analysis also shows that almost the same conversion bandwidth and maximum conversion efficiency with tolerant response flatness can be achieved when the manufacturing tolerance of the waveguide length is smaller than 0.1 cm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.010946DOI Listing

Publication Analysis

Top Keywords

wavelength converters
8
based cascaded
8
cascaded second-harmonic
8
second-harmonic generation
8
generation difference
8
difference frequency
8
frequency generation
8
generation bessel-chirped
8
bessel-chirped gratings
8
broadband wavelength
4

Similar Publications

The Arctic plays a crucial role in the Earth's climate system. However, the unique geography and climate of the Polar Regions present significant challenges for anti-icing/de-icing and clean water production in the Polar Regions, and there is an urgent need for innovative materials to help personnel and instrumentation address these issues. In this work, a composite structure with both micro- and nano-rough surfaces, excellent vapour escape channels and superhydrophobic properties is developed with the design concept of an anthill delicate cross-scale multi-stacked void structure.

View Article and Find Full Text PDF

The possibility to control the effects of drugs in time and space represents an ideal condition for developing safer and more personalized therapies against different disorders. In this context, photopharmacology has paved the way for the use of light in the modulation of drugs activity. Our interest is directed to photo-switchable molecules, capable of interconverting between two different isoforms upon light irradiation.

View Article and Find Full Text PDF

Engineering the electronic band structure of two-dimensional (2D) materials by imposing spatially periodic superlattice (SL) potentials opens a pathway to unconventional electronics. Nanopatterning the gate electrode or surface dielectric near 2D crystals provides a powerful strategy for realizing electrostatically tunable "remote" SLs with flexibility in lattice design. Here, we demonstrate the effectiveness of block copolymer (BCP)-templated dielectric nanopatterns for fabricating etch-free high-grade metal oxide SLs.

View Article and Find Full Text PDF

Yellow light-emitting diodes (LEDs) with a wavelength of 570-590 nm can reduce the excitability of peripheral nerves and the sensitivity of the skin, stimulate collagen synthesis, and tighten the skin, which plays an important role in skin rejuvenation. In general, commercial LEDs are made of phosphor excited by ultraviolet chips. It is very important for the development of yellow light emitters with high luminous efficiency, good stability, and environmental protection.

View Article and Find Full Text PDF

Using the optical comb as a transfer oscillator is an effective approach to convert the spectral properties of ultrastable lasers to other wavelength domains. We describe a digital locking system that enables this process to be replicated for several lasers at a time, supporting the simultaneous and independent lock of up to 6 lasers to a single, high performance reference oscillator. The locks are robust, easily reconfigured and contribute a short-term instability lower than 3 × 10 at 1 s, even when the comb is operated in the broad-linewidth regime and with no need for pre-stabilization of slave lasers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!