A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An fMRI and effective connectivity study investigating miss errors during advice utilization from human and machine agents. | LitMetric

As society becomes more reliant on machines and automation, understanding how people utilize advice is a necessary endeavor. Our objective was to reveal the underlying neural associations during advice utilization from expert human and machine agents with fMRI and multivariate Granger causality analysis. During an X-ray luggage-screening task, participants accepted or rejected good or bad advice from either the human or machine agent framed as experts with manipulated reliability (high miss rate). We showed that the machine-agent group decreased their advice utilization compared to the human-agent group and these differences in behaviors during advice utilization could be accounted for by high expectations of reliable advice and changes in attention allocation due to miss errors. Brain areas involved with the salience and mentalizing networks, as well as sensory processing involved with attention, were recruited during the task and the advice utilization network consisted of attentional modulation of sensory information with the lingual gyrus as the driver during the decision phase and the fusiform gyrus as the driver during the feedback phase. Our findings expand on the existing literature by showing that misses degrade advice utilization, which is represented in a neural network involving salience detection and self-processing with perceptual integration.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17470919.2016.1205131DOI Listing

Publication Analysis

Top Keywords

advice utilization
24
human machine
12
advice
9
machine agents
8
gyrus driver
8
utilization
6
fmri effective
4
effective connectivity
4
connectivity study
4
study investigating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!