Tuning transversal resonance modes of localized surface plasmons (LSPs) by the size and the ambient dielectric medium of Ag nanorods is presented. It is found that the resonance wavelength and intensity of the transversal modes of LSPs are closely related to the dimensions of the Ag nanorods embedded in anodic aluminum oxide membranes. The transversal resonance peak exhibits obvious redshifts from 365 to 396 nm with increasing nanorod diameter from 40 to 80 nm, and the resonance intensity remarkably enhances with increasing nanorod diameter. In addition, it is observed that the transversal resonance modes of LSPs in Ag nanorods are strongly sensitive to their surrounding dielectric medium such as water, ethanol, and cetyltrimethylammonium bromide, and the transversal resonance peak distinctly redshifts from 422 to 467 nm when the refractive index of the dielectric medium increases from 1.342 to 1.435. As a result, a refractive index sensitivity of up to 484 nm/RIU can be achieved based on the transversal resonance modes. The transverse resonance modes of LSPs in the Ag nanorods can be used for sensitive quantification of chemical and biological species.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.004871DOI Listing

Publication Analysis

Top Keywords

transversal resonance
24
resonance modes
20
dielectric medium
12
modes lsps
12
resonance
9
modes localized
8
localized surface
8
surface plasmons
8
resonance peak
8
increasing nanorod
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!