A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Introducing Meta-Partition, a Useful Methodology to Explore Factors That Influence Ecological Effect Sizes. | LitMetric

The study of the heterogeneity of effect sizes is a key aspect of ecological meta-analyses. Here we propose a meta-analytic methodology to study the influence of moderators in effect sizes by splitting heterogeneity: meta-partition. To introduce this methodology, we performed a meta-partition of published data about the traits that influence species sensitivity to habitat loss, that have been previously analyzed through meta-regression. Thus, here we aim to introduce meta-partition and to make an initial comparison with meta-regression. Meta-partition algorithm consists of three steps. Step 1 is to study the heterogeneity of effect sizes under the assumption of fixed effect model. If heterogeneity is found, we perform step 2, that is, to partition the heterogeneity by the moderator that minimizes heterogeneity within a subset while maximizing heterogeneity between subsets. Then, if effect sizes of the subset are still heterogeneous, we repeat step 1 and 2 until we reach final subsets. Finally, step 3 is to integrate effect sizes of final subsets, with fixed effect model if there is homogeneity, and with random effects model if there is heterogeneity. Results show that meta-partition is valuable to assess the importance of moderators in explaining heterogeneity of effect sizes, as well as to assess the directions of these relations and to detect possible interactions between moderators. With meta-partition we have been able to evaluate the importance of moderators in a more objective way than with meta-regression, and to visualize the complex relations that may exist between them. As ecological issues are often influenced by several factors interacting in complex ways, ranking the importance of possible moderators and detecting possible interactions would make meta-partition a useful exploration tool for ecological meta-analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943597PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158624PLOS

Publication Analysis

Top Keywords

heterogeneity sizes
12
heterogeneity
9
study heterogeneity
8
ecological meta-analyses
8
heterogeneity meta-partition
8
fixed model
8
model heterogeneity
8
final subsets
8
sizes
7
meta-partition
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!