Organic metalloporphyrins and inorganic polyoxometalates (POMs) are two kinds of efficient molecular catalysts to prompt a variety of chemical reactions. They have been used as active moieties for the synthesis of porous materials to realize highly efficient heterogeneous catalysis. Both of them are regarded as the organic/inorganic equivalent counterparts to complement the individual features. Therefore, the combination of metalloporphyrins and POMs in the same hybrid materials might generate interesting catalytic properties by emerging their unique individual functions. To avoid the random connections between metalloporphyrins, POMs, and lanthanide connecting nodes, we have developed a "step-by-step" aggregation strategy, including the reaction of POMs with metal ions to bind metal nodes on the surfaces of POMs at the first step and the reaction of the resulting POM derivatives with metalloporphyrin linkers to result in hybrid materials at the second step. Catalytic experiments demonstrate that the resulting hybrid material exhibits interesting catalytic properties in the heterogeneous epoxidation of olefins, in which the conversion, epoxide selectivity, turnover number, and turnover frequency for the epoxidation of styrene to (1,2-epoxyethyl)benzene are >99%, 94%, 220000, and 22000 h(-1), respectively. These results demonstrate that the collaborative work of multiple active sites in hybrid materials can achieve superior high efficiency in heterogeneous catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.6b00971 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection.
View Article and Find Full Text PDFMin Metall Explor
November 2024
Miller Consulting, Spokane, WA, USA.
Occupational exposures to respirable dusts and respirable crystalline silica (RCS) is well established as a health hazard in many industries including mining, construction, and oil and gas extraction. The U.S.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
Controlling symmetrical or asymmetrical growth has allowed a series of novel nanomaterials with prominent physicochemical properties to be produced. However, precise and continuous size growth based on a preserved template has long been a challenging pursuit, yet little has been achieved in terms of manipulation at the atomic level. Here, a correlated silver cluster series has been established, enabling atomically precise manipulation of symmetrical and asymmetrical surface structure expansions of metal nanoclusters.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Unlabelled: A weight-bearing lateral radiograph (WBLR) of the foot is a gold standard for diagnosing adult-acquired flatfoot deformity. However, it is difficult to measure the major axis of bones in WBLR without using auxiliary lines. Herein, we develop semantic segmentation with a deep learning model (DLm) on the WBLR of the foot for enhanced diagnosis of pes planus and pes cavus.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!