Objectives: To investigate the impact of respiratory motion on localization, and quantification of lung lesions for the Gross Tumor Volume utilizing a fully automated Auto3Dreg program and dynamic NURBS-based cardiac-torso digitized phantom (NCAT).
Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumor lesions. The motion correction technique adopted in this study was an image-based motion correction approach using, a voxel-intensity-based and a multi-resolution multi-optimization (MRMO) algorithm. The NCAT phantom was used to generate CT attenuation maps and activity distribution volumes for the lung regions. All the generated frames were co-registered to a reference frame using a time efficient scheme. Quantitative assessment including Region of Interest (ROI), image fidelity and image correlation techniques, as well as semi-quantitative line profile analysis and qualitatively overlaying non-motion and motion corrected image frames were performed.
Results: The largest motion was observed in the Z-direction. The greatest translation was for the frame 3, end inspiration, and the smallest for the frame 5 which was closet frame to the reference frame at 67% expiration. Visual assessment of the lesion sizes, 20-60mm at 3 different locations, apex, mid and base of lung showed noticeable improvement for all the foci and their locations. The maximum improvements for the image fidelity were from 0.395 to 0.930 within the lesion volume of interest. The greatest improvement in activity concentration underestimation was 7.7% below the true activity for the 20 mm lesion in comparison to 34.4% below, prior to correction. The discrepancies in activity underestimation were reduced with increasing the lesion sizes. Overlaying activity distribution on the attenuation map showed improved localization of the PET metabolic information to the anatomical CT images.
Conclusion: The respiratory motion correction for the lung lesions has led to an improvement in the lesion size, localization and activity quantification with a potential application in reducing the size of the PET GTV for radiotherapy treatment planning applications and hence improving the accuracy of the regime in treatment of lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927049 | PMC |
Int J Cardiovasc Imaging
January 2025
Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, IL, USA.
Parametric mapping has become a standard of care technique for the non-invasive assessment of myocardial edema and fibrosis. Conventional MOLLI-based T1 mapping is susceptible to many confounding effects particularly in the pediatric population. The requirement for compliant breath holds is a major limitation for younger or more ill patients.
View Article and Find Full Text PDFJ Strength Cond Res
February 2025
Sports Medicine and Movement Laboratory, School of Kinesiology, Auburn University, Auburn Alabama.
Bordelon, NM, Agee, TW, Wasserberger, KW, Downs-Talmage, JL, Everhart, KM, and Oliver, GD. Field-testing measures related to youth baseball hitting performance. J Strength Cond Res 39(2): 210-216, 2025-The purpose of the study was to determine the relationship between field tests and youth hitting performance (batted-ball velocity).
View Article and Find Full Text PDFRadiology
January 2025
From the Departments of Radiology (V.K., A.R., P.D.) and Pathology (J.N.), University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205.
A 61-year-old male patient without prior history of ophthalmologic problems presented with pain and redness in the left eye associated with slowly progressive proptosis over the previous 6 months. The patient also had diplopia in rightward and downward gaze. There was no vision loss.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
January 2025
Cedars-Sinai Medical Centre, Los Angeles, USA.
Objective: Accurate rotational reduction following tibial shaft fracture fixation is absent in up to 36% of cases yet may be critical for lower extremity biomechanics. The objective of this cadaveric study was to compare the results of freehand methods of reduction with software-assisted reduction.
Methods: Four fellowship-trained orthopaedic trauma surgeons attempted rotational correction in a cadaveric model with fluoroscopic assistance (without radiographic visualization of the fracture site) using (1) their method of choice (MoC) and (2) software assistance (SA).
Spine Deform
January 2025
Spine Unit, Department of Orthopaedic Surgery, Institute of Orthopedics, Lerdsin Hospital, College of Medicine, Rangsit University, 190 Silom Road, Bangkok, 10500, Thailand.
Study Design: A prospective comparative study.
Objectives: To compare the curve flexibility in adolescent idiopathic scoliosis (AIS) using supine traction push-prone and push-prone traction radiographs and to determine which method is more effective in predicting the postsurgical correction.
Background: Preserving spinal motion is one of the critical objectives in adolescent idiopathic scoliosis (AIS) surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!