The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968767PMC
http://dx.doi.org/10.1073/pnas.1520387113DOI Listing

Publication Analysis

Top Keywords

lmx1a lmx1b
16
dopaminergic neurons
16
midbrain dopaminergic
12
mitochondrial functions
8
survival adult
8
adult midbrain
8
transcription factors
8
dopaminergic
5
lmx1a
4
lmx1b regulate
4

Similar Publications

Parkinson disease (PD) is caused by the loss of ventral midbrain dopaminergic neurons (mDANs) in the substantia nigra pars compacta (SNpc). These cells are especially vulnerable to stress but can be protected by autophagy enhancement strategies in vitro and in vivo. In our recent study, we focused on the LIM (Lin11, Isl-1, and Mec-3)-domain homeobox transcription factors LMX1A (LIM homeobox transcription factor 1 alpha) and LMX1B (LIM homeobox transcription factor 1 beta), crucial drivers of mDAN differentiation with roles in autophagy gene expression for stress protection in the developed brain.

View Article and Find Full Text PDF

The LIM homeodomain transcription factors LMX1A and LMX1B are essential mediators of midbrain dopaminergic neuronal (mDAN) differentiation and survival. Here we show that LMX1A and LMX1B are autophagy transcription factors that provide cellular stress protection. Their suppression dampens the autophagy response, lowers mitochondrial respiration, and elevates mitochondrial ROS, and their inducible overexpression protects against rotenone toxicity in human iPSC-derived mDANs in vitro.

View Article and Find Full Text PDF

We performed transcriptome analysis using RNA sequencing on substantia nigra pars compacta (SNpc) from mice after acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment and from Parkinson's disease (PD) patients. Acute and chronic exposure to MPTP resulted in decreased expression of genes involved in sodium channel regulation. However, upregulation of pro-inflammatory pathways was seen after single dose but not after chronic MPTP treatment.

View Article and Find Full Text PDF

Lhx2 in germ cells suppresses endothelial cell migration in the developing ovary.

Exp Cell Res

June 2022

Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India. Electronic address:

LIM-homeobox genes play multiple roles in developmental processes, but their roles in gonad development are not completely understood. Herein, we report that Lhx2, Ils2, Lmx1a, and Lmx1b are expressed in a sexually dimorphic manner in mouse, rat, and human gonads during sex determination. Amongst these, Lhx2 has female biased expression in the developing gonads of species with environmental and genetic modes of sex determination.

View Article and Find Full Text PDF

Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!