Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for probing the surface of biological species with nanometer spatial resolution. Here, we report the TER spectra of an individual insulin fibril, the protein cast film and a short peptide (LVEALYL) microcrystal mimicking the fibril core. Two different types of TER spectra were acquired depending on the "roughness" of the probed surface at the molecular level. A fully reproducible, low-intensity, normal Raman-type spectrum was characteristic of the top flat surface of the microcrystal while highly variable, higher intensity TER spectra were obtained for the edges of the microcrystal, cast film, and fibril. As a result, two tip enhancement mechanisms of Raman scattering, long- and short-range, were proposed by analogy with the physical and chemical enhancement mechanisms, respectively, known for surface-enhanced Raman spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702816651890 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!