A Cell-Penetrating Peptide Targeting AAC-11 Specifically Induces Cancer Cells Death.

Cancer Res

INSERM UMRS1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France. Université Paris Diderot, Sorbonne Paris Cité, Paris, France. c-Dithem, Inserm Consortium for Discovery and Innovation in Therapy and Medicine.

Published: September 2016

AI Article Synopsis

  • AAC-11 is a protein that helps cancer cells survive stress and is often linked to poor outcomes in cancer patients, making it a potential target for new cancer treatments.
  • Researchers created a peptide called RT53 that can interfere with AAC-11's protective effects on cancer cells, leading to selective cell death while leaving normal cells unharmed.
  • In tests, RT53 successfully inhibited tumor growth in melanoma models without causing significant toxicity, highlighting its potential as a promising cancer therapy.

Article Abstract

AAC-11 is an antiapoptotic protein that is upregulated in most cancer cells. Increased expression of AAC-11 confers a survival advantage when cancer cells are challenged with various stresses and contributes to tumor invasion and metastases, whereas its deregulation reduces resistance to chemotherapeutic drugs. The antiapoptotic effect of AAC-11 may be clinically relevant as its expression correlates with poor prognosis in several human cancers. Thus, inactivation of AAC-11 might constitute an attractive approach for developing cancer therapeutics. We have developed an AAC-11-derived cell-penetrating peptide, herein named RT53, mimicking in part the heptad leucine repeat region of AAC-11, which functions as a protein-protein interaction module, and that can prevent AAC-11 antiapoptotic properties. In this study, we investigated the anticancer effects of RT53. Our results indicate that RT53 selectively kills cancer cells while sparing normal cells. RT53 selectively inserts into the membranes of cancer cells, where it adopts a punctate distribution and induces membranolysis and release of danger-associated molecular pattern molecules. Systemic administration of RT53 inhibited the growth of preexisting BRAF wild-type and V600E mutant melanoma xenograft tumors through induction of apoptosis and necrosis. Toxicological studies revealed that repetitive injections of RT53 did not produce significant toxicity. Finally, RT53-killed B16F10 cells induced tumor growth inhibition in immunocompetent mice following a rechallenge with live cancer cells of the same type. Collectively, our data demonstrate that RT53 possesses tumor-inhibitory activity with no toxicity in mice, suggesting its potential as a therapeutic agent for the treatment of melanoma and probably other cancers. Cancer Res; 76(18); 5479-90. ©2016 AACR.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-16-0302DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
cell-penetrating peptide
8
cancer
8
cells
8
aac-11 antiapoptotic
8
rt53 selectively
8
aac-11
7
rt53
7
peptide targeting
4
targeting aac-11
4

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!