Purpose: Approximately 5% of the adult population has one or more cerebral aneurysm. Aneurysms are one of the most dangerous cerebral vascular pathologies. Aneurysm rupture leads to a subarachnoid hemorrhage with a very high mortality rate of 45-50%. Despite the high importance of this disease there are no criteria for assessing the probability of aneurysm rupture. Moreover, mechanisms of aneurysm development and rupture are not fully understood until now.

Methods: Biomechanical and numerical computer simulations allow us to estimate the behavior of vessels in normal state and under pathological conditions as well as to make a prediction of their postoperative state. Biomechanical studies may help clinicians to find and investigate mechanical factors which are responsible for the initiation, growth and rupture of the cerebral aneurysms.

Results: In this work, biomechanical and numerical modeling of healthy and pathological cerebral arteries was conducted. Patient-specific models of the basilar and posterior cerebral arteries and patient-specific boundary conditions at the inlet were used in numerical simulations. A comparative analysis of the three vascular wall models (rigid, perfectly elastic, hyperelastic) was performed. Blood flow and stress-strain state of the two posterior cerebral artery aneurysm models was compared.

Conclusions: Numerical simulations revealed that hyperelastic material most adequately and realistically describes the behavior of the cerebral vascular walls. The size and shape of the aneurysm have a significant impact on the blood flow through the affected vessel and on the effective stress distribution in the aneurysm dome. It was shown that large aneurysm is more likely to rupture than small aneurysm.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aneurysm rupture
12
aneurysm
9
stress-strain state
8
cerebral
8
cerebral vascular
8
biomechanical numerical
8
cerebral arteries
8
posterior cerebral
8
numerical simulations
8
blood flow
8

Similar Publications

Objective: Flow diversion is increasingly used as an endovascular treatment for intracranial aneurysms. FRED-EPI is a prospective, multicenter, French study, conducted to analyze the safety and efficacy of aneurysm treatment with FRED/FRED Jr (Microvention, AlisoViejo, CA, USA) in current clinical practice.

Patients And Methods: Patients with intracranial aneurysms treated with FRED and FRED Jr who agreed to participate were prospectively and consecutively included in all French centers using these devices.

View Article and Find Full Text PDF

Background: Wall shear stress (WSS) plays a crucial role in the natural history of intracranial aneurysms (IA). However, spatial variations among WSS have rarely been utilized to correlate with IAs' natural history. This study aims to establish the feasibility of using spatial patterns of WSS data to predict IAs' rupture status (i.

View Article and Find Full Text PDF

Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of blood vessels. Both conditions can lead to severe outcomes, such as stroke or vessel rupture, which can be fatal.

View Article and Find Full Text PDF

Hybrid Arch Aneurysm Repair With Ascending Aortic Wrap and TEVAR.

J Endovasc Ther

January 2025

Aortic Center, Hôpital Marie-Lannelongue, Groupe Hospitalier Paris Saint Joseph, Université Paris-Saclay, INSERM UMR_S 999, Le Plessis Robinson, France.

Introduction: Management of patients with large aortic arch aneurysms who are considered high risk for frozen elephant trunk technique have been challenging, especially when they have a dilated ascending aorta (AA) that precludes total endovascular branched repair (arch BEVAR). A viable option in our armamentarium is wrapping of the AA (AW), and zone 0 Ishimaru TEVAR.

Methods: Retrospective analysis of our aortic database from 2013 to 2024 to select high-risk patients with aortic arch aneurysm that had an AW and TEVAR.

View Article and Find Full Text PDF

Most thoracic aortic aneurysms (TAAs) are asymptomatic and often diagnosed at the time of rupture. TAAs involving the proximal arch require adequate coverage with thoracic endovascular aortic repair, which is timely and challenging in emergent ruptures. In situ laser fenestration is a novel method of arch revascularization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!