Scalable Synthesis of Few-Layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-Performance Li- and Na-Ion Battery Anodes.

ACS Appl Mater Interfaces

Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea.

Published: August 2016

It is still a challenging task to develop a facile and scalable process to synthesize porous hybrid materials with high electrochemical performance. Herein, a scalable strategy is developed for the synthesis of few-layer MoS2 incorporated into hierarchical porous carbon (MHPC) nanosheet composites as anode materials for both Li- (LIB) and Na-ion battery (SIB). An inexpensive oleylamine (OA) is introduced to not only serve as a hinder the stacking of MoS2 nanosheets but also to provide a conductive carbon, allowing large scale production. In addition, a SiO2 template is adopted to direct the growth of both carbon and MoS2 nanosheets, resulting in the formation of hierarchical porous structures with interconnected networks. Due to these unique features, the as-obtained MHPC shows substantial reversible capacity and very long cycling performance when used as an anode material for LIBs and SIBs, even at high current density. Indeed, this material delivers reversible capacities of 732 and 280 mA h g(-1) after 300 cycles at 1 A g(-1) in LIBs and SIBs, respectively. The results suggest that these MHPC composites also have tremendous potential for applications in other fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b05010DOI Listing

Publication Analysis

Top Keywords

hierarchical porous
12
synthesis few-layer
8
few-layer mos2
8
mos2 incorporated
8
incorporated hierarchical
8
porous carbon
8
na-ion battery
8
mos2 nanosheets
8
libs sibs
8
scalable synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!