Peripheral quantitative computed tomography (pQCT) is a non-invasive, low-radiation tool for measuring volumetric bone mineral density. It has potential for use in fracture healing applications; however, the unknown attenuation effects of cast material on peripheral quantitative computed tomography have contributed to its limited use in this area. The effect of two common cast materials, polyester and Plaster of Paris was investigated by performing both in vitro and in vivo studies. The in vitro study tested the effect of increasing layers of cast material on bone density measurements performed on a hydroxyapatite phantom. Cast thickness was directly associated with a reduction in bone mineral density, with twelve layers of polyester and Plaster of Paris resulting in a 0.55 and 2.21 % decrease in bone density measurements. Precision error in situ with polyester cast material was 0.71 %, and 2.31 % with Plaster of Paris cast material. The in vivo study comprised a prospective trial with 28 healthy adult participants to evaluate the effect of the two cast materials. Trabecular bone mineral density was increased by 0.5 % in the presence of a polyester cast and decreased by 4.22 % in the presence of a Plaster of Paris cast. Cortical bone mineral density was decreased by 3.46 and 5.54 % for polyester and Plaster of Paris, respectively. This study quantified the effects of orthopaedic casts on pQCT-derived bone parameters. The results suggest applicability of commonly utilised cast materials in combination with pQCT to assess fracture healing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-016-0169-8DOI Listing

Publication Analysis

Top Keywords

plaster paris
24
bone mineral
20
mineral density
20
polyester plaster
16
cast material
16
peripheral quantitative
12
quantitative computed
12
computed tomography
12
cast materials
12
cast
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!