Although c-type cytochromes (c-Cyts) mediating metal reduction have been mainly investigated with in vitro purified proteins of dissimilatory metal reducing bacteria, the in vivo behavior of c-Cyts is still unclear given the difficulty in measuring the proteins of intact cells. Here, c-Cyts in living Shewanella putrefaciens 200 (SP200) was successfully quantified using diffuse-transmission UV/Vis spectroscopy due to the strong absorbance of hemes, and the in situ spectral kinetics of Cr(VI) reduction by c-Cyts were examined over time. The reduced product Cr(III) observed on the cell surface may play a role in inhibiting the Cr(VI) reduction and reducing the cell numbers with high concentrations (>200 μM) of Cr(VI) evidenced by the 16S rRNA analysis. A brief kinetic model was established with two predominant reactions, redox transformation of c-Cyts and Cr(VI) reduction by reduced c-Cyts, but the fitting curves were not well-matched with c-Cyts data. The Cr(III)-induced inhibitory effect to the cellular function of redox transformation of c-Cyts was then added to the model, resulting in substantially improved the model fitting. This study provides a case of directly examining the reaction properties of outer-membrane enzyme during microbial metal reduction processes under physiological conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939527 | PMC |
http://dx.doi.org/10.1038/srep29592 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China. Electronic address:
Heterointerface engineering is an effective strategy to design and construct high-performance photocatalysts. Herein, polyaniline (PANI) nanoparticles and ZnTi layered double hydroxide (ZnTi-LDH) nanosheets were integrated to form organic-inorganic heterostructure (PANI/LDH) via d-π electronic coupling using in-situ polymerization for photocatalytic oxidation/reduction towards tetracycline (TC) and Cr(VI). The photocatalytic activity was closely related to feed amount of aniline (Ani) in the polymerization process, which the abundant PANI nanoparticles were evenly distributed on the surface of ZnTi-LDH nanosheets at the proper Ani feed amount, and thus reinforced d-π electronic coupling at the organic-inorganic interfaces more efficiently.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India. Electronic address:
Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China.
In this work, bimetallic organic frameworks NH-MOFs(Fe, Ti) with different Fe/Ti molar ratios were prepared by a hydrothermal method for the synchronous redox transformation of Cr(VI) and As(III). These results showed that NH-MIL-125(Ti) was less effective in the photocatalytic removal of Cr(VI), whereas NH-MIL-88B(Fe) was less effective in the photocatalytic oxidative removal of As(III). Due to the introduction of Fe, the photocatalytic reduction removal of Cr(VI) (23.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.
This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!