Enzymes belonging to the GNAT superfamily are widely distributed in nature where they play key roles in the transfer of acyl groups from acyl-CoAs to primary amine acceptors. The amine acceptors run the gamut from histones to aminoglycoside antibiotics to small molecules such as serotonin. Whereas those family members that function on histones have been extensively studied, the GNAT enzymes that employ nucleotide-linked sugars as their substrates have not been well characterized. Indeed, though the structures of two of these "amino sugar" GNAT enzymes have been determined within the past 10 years, details concerning their active site architectures have been limited because of a lack of bound nucleotide-linked sugar substrates. Here we describe a combined structural and biochemical analysis of FdhC from Acinetobacter nosocomialis O2. On the basis of bioinformatics, it was postulated that FdhC catalyzes the transfer of a 3-hydroxybutanoyl group from 3-hydroxylbutanoyl-CoA to dTDP-3-amino-3,6-dideoxy-d-galactose, to yield an unusual sugar that is ultimately incorporated into the surface polysaccharides of the bacterium. We present data confirming this activity. In addition, the structures of two ternary complexes of FdhC, in the presence of CoA and either 3-hydroxybutanoylamino-3,6-dideoxy-d-galactose or 3-hydroxybutanoylamino-3,6-dideoxy-d-glucose, were solved by X-ray crystallographic analyses to high resolution. Kinetic parameters were determined, and activity assays demonstrated that FdhC can also utilize acetyl-CoA, 3-methylcrotonyl-CoA, or hexanoyl-CoA as acyl donors, albeit at reduced rates. Site-directed mutagenesis experiments were conducted to probe the catalytic mechanism of FdhC. Taken together, the data presented herein provide significantly new molecular insight into those GNAT superfamily members that function on nucleotide-linked amino sugars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095703 | PMC |
http://dx.doi.org/10.1021/acs.biochem.6b00602 | DOI Listing |
Nat Commun
December 2024
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.
View Article and Find Full Text PDFACS Omega
December 2024
San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States.
Spermidine/spermine acetyltransferases (SSATs) and other types of polyamine acetyltransferases (PAATs) acetylate diamines and/or polyamines. These enzymes are evolutionarily related and belong to the Gcn5-related acetyltransferase (GNAT) superfamily, yet we lack a fundamental understanding of their substrate specificity and/or promiscuity toward different compounds. Many of these enzymes are known or are predicted to acetylate polyamines, but in the cell there are other types of compounds that contain moieties derived from polyamines that may be the native substrates for these enzymes.
View Article and Find Full Text PDFFront Cell Infect Microbiol
July 2024
Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT).
View Article and Find Full Text PDFInt J Biol Macromol
April 2024
Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom. Electronic address:
Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, N-acetyl transferase from Bacillus cereus (RimL), a protein that was previously wrongly annotated as an aminoglycosyltransferase.
View Article and Find Full Text PDFSci Signal
September 2023
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!