Photochemical degradation is an important issue to be overcome in advancing the lifetime of fluorene-containing conjugated polymers. In order to optimize the inertness of the materials, a quantitative measure for the efficiency of degradation is needed. Here, we introduce a method to measure a relative quantum yield of the photochemical degradation by monitoring the kinetics of the process by means of UV/vis spectroscopy and liquid chromatography (LC) techniques. This method is employed to a set of differently substituted 2,7-diphenylfluorenes, serving as model compounds for polyfluorene materials. Our measurements show that the quantum yield changes by orders of magnitude upon varying the bridge substituents and that altered kinetics indicate changing degradation mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b02127DOI Listing

Publication Analysis

Top Keywords

photochemical degradation
12
quantum yield
8
degradation bridge-substituted
4
bridge-substituted fluorene-based
4
fluorene-based materials
4
materials photochemical
4
degradation
4
degradation issue
4
issue overcome
4
overcome advancing
4

Similar Publications

The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors ( and , where has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)] (bpy = 2,2'-bipyridine), and MV (MV = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12-13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents.

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Photocatalytic production and biological activity of D-arabino-1,4-lactone from D-fructose.

Sci Rep

January 2025

Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan.

Lactones play crucial roles in various fields, such as pharmaceuticals, food, and materials science, due to their unique structures and diverse biological activities. However, certain lactones are difficult to obtain in large quantities from natural sources, necessitating their synthesis to study their properties and potential. In this study, we investigated the photocatalytic conversion of D-fructose, a biomass-derived and naturally abundant sugar, using a TiO photocatalyst under light irradiation in ambient conditions.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!