Apolipoprotein A-I (ApoA-I) is a key component of high density lipoproteins which possess anti-atherosclerotic and anti-inflammatory properties. Insulin is a crucial mediator of the glucose and lipid metabolism that has been implicated in atherosclerotic and inflammatory processes. Important mediators of insulin signaling such as Liver X Receptors (LXRs) and Forkhead Box A2 (FOXA2) are known to regulate apoA-I expression in liver. Forkhead Box O1 (FOXO1) is a well-known target of insulin signaling and a key mediator of oxidative stress response. Low doses of insulin were shown to activate apoA-I expression in human hepatoma HepG2 cells. However, the detailed mechanisms for these processes are still unknown. We studied the possible involvement of FOXO1, FOXA2, LXRα, and LXRβ transcription factors in the insulin-mediated regulation of apoA-I expression. Treatment of HepG2 cells with high doses of insulin (48 h, 100 nM) suppresses apoA-I gene expression. siRNAs against FOXO1, FOXA2, LXRβ, or LXRα abrogated this effect. FOXO1 forms a complex with LXRβ and insulin treatment impairs FOXO1/LXRβ complex binding to hepatic enhancer and triggers its nuclear export. Insulin as well as LXR ligand TO901317 enhance the interaction between FOXA2, LXRα, and hepatic enhancer. These data suggest that high doses of insulin downregulate apoA-I gene expression in HepG2 cells through redistribution of FOXO1/LXRβ complex, FOXA2, and LXRα on hepatic enhancer of apoA-I gene. J. Cell. Biochem. 118: 382-396, 2017. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.25651DOI Listing

Publication Analysis

Top Keywords

apoa-i expression
12
doses insulin
12
hepg2 cells
12
foxa2 lxrα
12
apoa-i gene
12
hepatic enhancer
12
apolipoprotein a-i
8
human hepatoma
8
lxrβ transcription
8
transcription factors
8

Similar Publications

Biosynthesis of Bacteriochlorophylls and Bacteriochlorophyllides in Escherichia coli.

Biotechnol Bioeng

December 2024

Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

Photosynthesis, the most important biological process on Earth, converts light energy into chemical energy with essential pigments like chlorophylls and bacteriochlorophylls. The ability to reconstruct photosynthesis in heterotrophic organisms could significantly impact solar energy utilization and biomass production. In this study, we focused on constructing light-dependent biosynthesis pathways for bacteriochlorophyll (BChl) a and bacteriochlorophyllide (BChlide) d and c in the model strain Escherichia coli.

View Article and Find Full Text PDF

Metabolic dysfunction-associated fatty liver disease (MASLD) is a common liver and health issue associated with heightened cardiovascular disease (CVD) risk, with Cytokeratin 18 (CK-18) as a marker of liver injury across the MASLD to cirrhosis spectrum. Autoantibodies against apolipoprotein A-1 (AAA-1s) predict increased CVD risk, promoting atherosclerosis and liver steatosis in apoE-/- mice, though their impact on liver inflammation and fibrosis remains unclear. This study examined AAA-1s' impact on low-grade inflammation, liver steatosis, and fibrosis using a MASLD mouse model exposed to AAA-1s passive immunization (PI).

View Article and Find Full Text PDF
Article Synopsis
  • Heat stress in poultry affects their ability to manage body temperature, but pequi oil's antioxidant properties may help alleviate these effects.
  • This study examined the impact of pequi oil on laying hens under heat stress by analyzing plasma proteins after feeding two different diets over 84 days.
  • Key proteins linked to inflammation, immune response, and heat adaptation were found to be enhanced in hens fed with pequi oil, suggesting it could improve resilience to heat stress and boost egg production.
View Article and Find Full Text PDF

Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors.

View Article and Find Full Text PDF

Protein corona potentiates the recovery of nanoparticle-induced disrupted tight junctions in endothelial cells.

Nanoscale Horiz

December 2024

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China.

Nanoparticle interactions with biological systems are intricate processes influenced by various factors, among which the formation of protein corona plays a pivotal role. This research investigates a novel aspect of nanoprotein corona-cell interactions, focusing on the impact of the protein corona on the recovery of disrupted tight junctions in endothelial cells. We demonstrate that the protein corona formed on the surface of star-shaped nanoparticles induces the aggregates of ZO-1, which is quite important for the barriers' integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!