Interplay of Ion-Water and Water-Water Interactions within the Hydration Shells of Nitrate and Carbonate Directly Probed with 2D IR Spectroscopy.

J Am Chem Soc

Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Published: August 2016

The long-range influence of ions in solution on the water hydrogen-bond (H-bond) network remains a topic of vigorous debate. Recent spectroscopic and theoretical studies have, for the most part, reached the consensus that weakly coordinating ions only affect water molecules in the first hydration shell. Here, we apply ultrafast broadband two-dimensional infrared (2D IR) spectroscopy to aqueous nitrate and carbonate in neat H2O to study the solvation structure and dynamics of ions on opposite ends of the Hofmeister series. By exciting both the water OH stretches and ion stretches and probing the associated cross-peaks between them, we are afforded a comprehensive view into the complex nature of ion hydration. We show in aqueous nitrate that weak ion-water H-bonding leads to water-water interactions in the ion solvation shells dominating the dynamics. In contrast, the carbonate CO stretches show significant mixing with the water OH stretches due to strong ion-water H-bonding such that the water and ion modes are intimately correlated. Further, the excitonic nature of vibrations in neat H2O, which spans multiple water molecules, is an important factor in describing ion hydration. We attribute these complex dynamics to the likely presence of intermediate-range effects influenced by waters beyond the first solvation shell.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b05122DOI Listing

Publication Analysis

Top Keywords

water-water interactions
8
nitrate carbonate
8
water molecules
8
aqueous nitrate
8
neat h2o
8
water stretches
8
ion hydration
8
ion-water h-bonding
8
water
6
ion
5

Similar Publications

Modeling ethanol/water adsorption in all-silica zeolites using the real adsorbed solution theory.

J Chem Phys

January 2025

Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003-9303, USA.

A comprehensive set of single-component and binary isotherms were collected for ethanol/water adsorption into the siliceous forms of 185 known zeolites using grand-canonical Monte Carlo simulations. Using these data, a systematic analysis of ideal/real adsorbed-solution theory (IAST/RAST) was conducted and activity coefficients were derived for ethanol/water mixtures adsorbed in different zeolites based on RAST. It was found that activity coefficients of ethanol are close to unity while activity coefficients of water are larger in most zeolites, indicating a positive excess free energy of the mixture.

View Article and Find Full Text PDF

Ion Effects on Terahertz Spectra of Microsolvated Clusters.

J Phys Chem Lett

December 2024

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.

Water clusters containing Na and Cl ions play a key role in the atmospheric chemistry of sea salt aerosols. While Na is clearly buried deep inside, Cl appears to be a chameleon since evidence for both surface-localized and interior solvation states are reported. Thus, disclosing the preferred location of Cl within clusters remains challenging.

View Article and Find Full Text PDF

On the compatibility of the Madrid-2019 force field for electrolytes with the TIP4P/Ice water model.

J Chem Phys

December 2024

Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

The Madrid-2019 force field was recently developed to perform simulations of electrolytes in water. The model was specifically parameterized for TIP4P/2005 water and uses scaled charges for the ions. In this work, we test the compatibility of the Madrid-2019 force field with another water model: TIP4P/Ice.

View Article and Find Full Text PDF

All-aqueous (water-in-water) emulsions are increasingly used as droplets reactors. The present communication reports that precursors of a reaction segregated by partitioning between emulsion phases can undergo reaction at the interface, i.e.

View Article and Find Full Text PDF

Sodium diethyldithiocarbamate (DDTC), a common collector used to enhance the hydrophobicity of minerals in froth flotation, nevertheless weakens the hydrophobicity of the talc surface. To rationalize this anomaly, the interactions of a hydrophobic alkyl group and hydrophilic mineralophilic group (-NCS) of heteropolar surfactant DDTC, and a water molecule with the talc (001) surface, were investigated. Herein, DFT simulations found that the talc (001) surface features natural hydrophobicity determined by the competition between adhesion (surface water) and cohesion (water-water interactions).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!