Purpose: To quantify bleaching-induced changes in fundus reflectance in the mouse retina.
Methods: Light reflected from the fundus of albino (Balb/c) and pigmented (C57Bl/6J) mice was measured with a multichannel scanning laser ophthalmoscopy optical coherence tomography (SLO-OCT) optical system. Serial scanning of small retinal regions was used for bleaching rhodopsin and measuring reflectance changes.
Results: Serial scanning generated a saturating reflectance increase centered at 501 nm with a photosensitivity of 1.4 × 10-8 per molecule μm2 in both strains, 2-fold higher than expected were irradiance at the rod outer segment base equal to that at the retinal surface. The action spectrum of the reflectance increase corresponds to the absorption spectrum of mouse rhodopsin in situ. Spectra obtained before and after bleaching were fitted with a model of fundus reflectance, quantifying contributions from loss of rhodopsin absorption with bleaching, absorption by oxygenated hemoglobin (HbO2) in the choroid (Balb/c), and absorption by melanin (C57Bl/6J). Both mouse strains exhibited light-induced broadband reflectance changes explained as bleaching-induced reflectivity increases at photoreceptor inner segment/outer segment (IS/OS) junctions and OS tips.
Conclusions: The elevated photosensitivity of rhodopsin bleaching in vivo is explained by waveguide condensing of light in propagation from rod inner segment (RIS) to rod outer segment (ROS). The similar photosensitivity of rhodopsin in the two strains reveals that little light backscattered from the sclera can enter the ROS. The bleaching-induced increases in reflectance at the IS/OS junctions and OS tips resemble results previously reported in human cones, but are ascribed to rods due to their 30/1 predominance over cones in mice and to the relatively minor amount of cone M-opsin in the regions scanned.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959838 | PMC |
http://dx.doi.org/10.1167/iovs.16-19393 | DOI Listing |
J Insect Physiol
December 2024
Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland. Electronic address:
The visual system is a sensory system which is sensitive to light and detects photic stimuli. It plays many important functions, such as vision, circadian clock entrainment and regulation of sleep-wake behavior. The interconnection between the visual system and clock network is precisely regulated.
View Article and Find Full Text PDFElife
October 2024
Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany.
Channelrhodopsins (ChRs) are light-gated ion channels widely used to optically activate or silence selected electrogenic cells, such as individual brain neurons. Here, we describe identifying and characterizing a set of anion-conducting ChRs (ACRs) from diverse taxa and representing various branches of the ChR phylogenetic tree. The ACR (MsACR1) showed high sensitivity to yellow-green light ( at 555 nm) and was further engineered for optogenetic applications.
View Article and Find Full Text PDFBiol Pharm Bull
October 2024
Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.
Because G protein coupled receptors (GPCRs) represent the largest family of drug targets in clinical trials, GPCR signaling cascades are closely related to various physiological phenomena, attracting significant attention in pharmaceutical science. Opsins (also known as animal rhodopsins) are photoreceptive proteins containing retinal as a chromophore, which function as GPCRs and underlie the molecular basis of photoreception in animals. Recently, opsins have been progressively applied in an innovative technology called optogenetics to regulate biological activities using light.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
November 2024
Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
The eyes of squids, octopuses, and cuttlefish are a textbook example for evolutionary convergence, due to their striking similarity to those of vertebrates. For this reason, studies on cephalopod photoreception and vision are of importance for a broader audience. Previous studies showed that genes such as pax6, or certain opsin-encoding genes, are evolutionarily highly conserved and play similar roles during ontogenesis in remotely related bilaterians.
View Article and Find Full Text PDFGenetics
January 2025
Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany.
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!