Download full-text PDF

Source
http://dx.doi.org/10.1039/c6an90055kDOI Listing

Publication Analysis

Top Keywords

discovery sers
4
sers idiosyncratic
4
idiosyncratic account
4
account vibrational
4
vibrational spectroscopist
4
discovery
1
idiosyncratic
1
account
1
vibrational
1
spectroscopist
1

Similar Publications

KRAS inhibitors: resistance drivers and combinatorial strategies.

Trends Cancer

December 2024

Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy: a half-century historical perspective.

Chem Soc Rev

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.

Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.

View Article and Find Full Text PDF

Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations.

Food Chem

March 2025

China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China. Electronic address:

Food contamination poses serious health risks, compelling the discovery of new methods to guarantee regulatory compliance and build consumer conviction. Surface Enhanced Raman Spectroscopy (SERS) has come into sight as a sophisticated approach for the ultrasensitive discovery of toxins in food and water, proposing non-destructive, quick, and precise analysis. Instantaneously, quantum dots (QDs) are astonishing nanomaterials, characterized by distinctive attributes such as quantum confinement and optical photostability.

View Article and Find Full Text PDF

While the SARS-CoV-2 vaccine offers 70%-95% protection effectiveness against Coronavirus disease 2019 (COVID-19), a portion of recipients do not produce adequate protective immune responses, particularly, neutralizing antibodies (nAbs). Previous studies of COVID-19 patients have identified several public antibody lineages, such as IGHV3-30, IGHV3-33, IGHV3-53, IGHV1-58, and IGHV1-24. However, it remains unclear how these public antibodies evolve during vaccination or whether there are any special antibody lineages correlated with SARS-CoV-2 vaccination.

View Article and Find Full Text PDF

Surface-Enhanced Raman Spectroscopy at the Interface between Drug Discovery and Personalized Medicine.

J Phys Chem C Nanomater Interfaces

October 2024

Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States.

Personalized medicine and drug discovery are different, yet overlapping, fields, and information from each field is exchanged to improve the other. The current methods used for devising personalized therapeutic plans and developing drug discovery applications are costly, time-consuming, and complex; thus, their applicability is limited in both fields. However, surface-enhanced Raman spectroscopy (SERS) offers potential solutions to current challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!