Targeted and sustained delivery of biologicals to improve neovascularization has been focused on stimulation angiogenesis. The formation of collaterals however is hemodynamically much more efficient, but as a target of therapy has been under-utilized. Although there is good understanding of the molecular processes involving collateral formation and there are interesting drugable candidates, the need for targeting and sustained delivery is still an obstacle towards safe and effective treatment. Molecular targeting with nanoparticles of liposomes is promising and so are peri-vascularly delivered polymer-based protein reservoirs. These developments will lead to future arteriogenesis strategies that are adjunct to current revascularization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/tde-2016-0024 | DOI Listing |
ACS Nano
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China.
Nanoenabled agrochemicals mainly including nanopesticides and nanofertilizers based on nanotechnology play a crucial role in plant protection and food security. These agrochemicals exhibit high dose delivery efficiency and biological activity due to their unique nanoscale properties. However, nanoscale properties can also be a double-edged sword, posing potential risks to both humans and the environment.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267. Electronic address:
Previous studies of RNA nanoparticles have demonstrated the potential of these nanoparticles in ocular delivery via the subconjunctival route. Sustained ocular delivery is beneficial for chronic eye disease treatment, and utilizing a reservoir implant in the periocular space (e.g.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:
New multipurpose prevention technology products for use by women, focused on reducing HIV infection and preventing unwanted pregnancies, are a global health priority. Discreet long-acting formulations will empower women with greater choice around their sexual health. This paper outlines the development of a long-acting technology that enables multiple drugs to be incorporated within one injectable platform.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515051, China; Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515051, China; Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515051, China. Electronic address:
Healing of diabetic wounds is significantly impeded by a complex environment comprising biofilm formation, excessive inflammation, and compromised angiogenic capacity, leading to a disordered physiological healing process. Restoration and maintenance of a normal and orderly healing process in diabetic wounds remain unmet therapeutic objectives. Herein, an innovative bimetal-phenolic network hydrogel system is designed with a concentric circular structure, enabling dual-drug delivery with differentiated release kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!