Background: Distinguishing squamous cell carcinoma (SCC) from keratoacanthoma (KA) by histopathological features may not be sufficient for a differential diagnosis, as KAs may, in some cases, imitate well-differentiated SCCs.

Aims: In this study, we investigated whether the expression of the p16, p21, p27, p53 genes and a Ki-67 proliferation index are useful in distinguishing between these two tumors.

Study Design: Cross-sectional study.

Methods: Immunohistochemistry was used to investigate the expression of the p16, p21, p27, p53 genes and the Ki-67 proliferation index was investigated in well-differentiated SCC with KA-like features (n=40) and KA (n=30).

Results: The results of all of the examined markers, except for p27 (p16, p21, p53, and Ki-67) were found to be significantly different between the SCC and KA samples (p<0.05).

Conclusion: In well-differentiated SCC with KA-like features and KA cases where the differential diagnosis is difficult from a histopathological perspective, the use of p16, p21, p53 expression and a Ki-67 proliferation index can be useful for the differential diagnosis of SCCs and KAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924954PMC
http://dx.doi.org/10.5152/balkanmedj.2016.16442DOI Listing

Publication Analysis

Top Keywords

p16 p21
16
p21 p27
12
p27 p53
12
p53 ki-67
8
differential diagnosis
8
squamous cell
8
expression p16
8
p53 genes
8
genes ki-67
8
ki-67 proliferation
8

Similar Publications

Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).

View Article and Find Full Text PDF

Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction.

View Article and Find Full Text PDF

Cellular Senescence Contributes to Colonic Barrier Integrity Impairment Induced by Toxoplasma gondii Infection.

Inflammation

January 2025

Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Toxoplasma gondii (T. gondii) induces gut barrier integrity impairment, which is crucial to the establishment of long-term infection in hosts. Cellular senescence is an imperative event that drives disease progression.

View Article and Find Full Text PDF

Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression.

Adv Sci (Weinh)

January 2025

Department of Hepatic Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.

Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis.

View Article and Find Full Text PDF

D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!