A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets. | LitMetric

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets.

Iran J Basic Med Sci

Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands.

Published: May 2016

Objectives: This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets.

Materials And Methods: To evaluate effectiveness of proposed feature selection method, we employed three different classifiers artificial neural network (ANN) and PS-classifier and genetic algorithm based classifier (GA-classifier) on Wisconsin breast cancer datasets include Wisconsin breast cancer dataset (WBC), Wisconsin diagnosis breast cancer (WDBC), and Wisconsin prognosis breast cancer (WPBC).

Results: For WBC dataset, it is observed that feature selection improved the accuracy of all classifiers expect of ANN and the best accuracy with feature selection achieved by PS-classifier. For WDBC and WPBC, results show feature selection improved accuracy of all three classifiers and the best accuracy with feature selection achieved by ANN. Also specificity and sensitivity improved after feature selection.

Conclusion: The results show that feature selection can improve accuracy, specificity and sensitivity of classifiers. Result of this study is comparable with the other studies on Wisconsin breast cancer datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923467PMC

Publication Analysis

Top Keywords

feature selection
36
breast cancer
32
wisconsin breast
16
feature
10
genetic algorithm
8
breast
8
cancer
8
cancer diagnosis
8
selection
8
three classifiers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!