The electrocaloric effect (ECE) in (1-x)BaZr0.18 Ti0.82O3-(x)BaSn0.11Ti0.89O3 (BZT18-BST11, 0.1≤x≤0.5) ceramics is investigated near room temperature using a calorimetry method. The ceramics exhibit relaxor-like ferroelectric characteristics and by merging phases, a large electrocaloric (EC) response is observed in the system. The largest entropy change is 4.8 Jkg(-1) K(-1) (along with a temperature change of 3.5 K), which is induced under an electric field of 10 MV m(-1) for the 0.8 BaZr0.18Ti0.82O3-0.2 BaSn0.11Ti0.89O3 ceramics. This result reveals that the coexistence of multiple phases improves the ECE of the ceramics, which provides an effective route to achieve a large EC response using a small electric field.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938074 | PMC |
http://dx.doi.org/10.1098/rsta.2016.0055 | DOI Listing |
Soft Matter
January 2025
Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.
Electrocaloric effects (ECE) in solid state materials, such as ferroelectric ceramics and ferroelectric polymers, have a great impact in developing cooling systems. Herein, we describe the ECE of a newly synthesized ferroelectric nematic liquid crystal compound at the isotropic-ferroelectric nematic (I-N) phase transition. While the Joule heat completely suppressed the ECE in a DC field, in an AC field with < 1.
View Article and Find Full Text PDFScience
November 2024
Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Electrocaloric (EC) cooling presents a promising approach to efficient and compact solid-state heat pumps. However, reported EC coolers have complex architectures and limited cooling temperature lift. In this work, we introduce a self-regenerative heat pump (SRHP) using a cascade of EC polymer film stacks, which have electrostrictive actuations in response to an electric field that are directed to realize efficient heat transfer, eliminating the need for additional transportive or regenerative mechanisms.
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
ACS Appl Mater Interfaces
August 2024
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
In the pursuit of eco-friendly alternatives for refrigeration technology, electrocaloric materials have emerged as promising candidates for efficient solid-state refrigeration due to their high efficiency and integrability. However, current advancements in electrocaloric effects (ECEs) are often constrained by high temperatures and elevated electric fields (-field), limiting practical applicability. Informed by phase-field simulation, this study introduces a (1-)Pb(YbNb)O-Pb(MgNb)O system, strategically engineered to incorporate highly ordered YN and disordered MN mixtures.
View Article and Find Full Text PDFNat Commun
August 2024
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!