Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL.

J Biol Chem

From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425 and

Published: September 2016

Fibulin-1 (FBLN1) is a member of a growing family of extracellular matrix glycoproteins that includes eight members and is involved in cellular functions such as adhesion, migration, and differentiation. FBLN1 has also been implicated in embryonic heart and valve development and in the formation of neural crest-derived structures, including aortic arch, thymus, and cranial nerves. Fibroblast growth factor 8 (FGF8) is a member of a large family of growth factors, and its functions include neural crest cell (NCC) maintenance, specifically NCC migration as well as patterning of structures formed from NCC such as outflow tract and cranial nerves. In this report, we sought to investigate whether FBLN1 and FGF8 have cooperative roles in vivo given their influence on the development of the same NCC-derived structures. Surface plasmon resonance binding data showed that FBLN1 binds tightly to FGF8 and prevents its enzymatic degradation by ADAM17. Moreover, overexpression of FBLN1 up-regulates FGF8 gene expression, and down-regulation of FBLN1 by siRNA inhibits FGF8 expression. The generation of a double mutant Fbln1 and Fgf8 mice (Fbln1(-/-) and Fgf8(-/-)) showed that haplo-insufficiency (Fbln1(+/-) and Fgf8(+/-)) resulted in increased embryonic mortality compared with single heterozygote crosses. The mortality of the FGF8/Fbln1 double heterozygote embryos occurred between 14.5 and 16.5 days post-coitus. In conclusion, FBLN1/FGF8 interaction plays a role in survival of vertebrate embryos, and reduced levels of both proteins resulted in added mortality in utero The FBLN1/FGF8 interaction may also be involved in the survival of neural crest cell population during development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009248PMC
http://dx.doi.org/10.1074/jbc.M115.702761DOI Listing

Publication Analysis

Top Keywords

fibroblast growth
8
growth factor
8
cranial nerves
8
neural crest
8
crest cell
8
fbln1 fgf8
8
fbln1/fgf8 interaction
8
fbln1
7
fgf8
6
fibulin-1 binds
4

Similar Publications

This study investigated possible mechanisms underlying differences between heterophilic and homophilic cadherin adhesions that influence intercellular mechanics and multicellular organization. Results suggest that homophilic cadherin ligation selectively activates force-transduction, such that resulting signaling and mechano-transduction amplitudes are independent of cadherin binding affinities. Epithelial (E-) and neural (N-) cadherin cooperate with distinct growth factors to mechanically activate force-transduction cascades.

View Article and Find Full Text PDF

Achondroplasia, the most prevalent short-stature disorder, is caused by missense variants overactivating the fibroblast growth factor receptor 3 (FGFR3). As current surgical and pharmaceutical treatments only partially improve some disease features, we sought to explore a genetic approach. We show that an enhancer located 29 kb upstream of mouse Fgfr3 (-29E) is sufficient to confer a transgenic mouse reporter with a domain of expression in cartilage matching that of Fgfr3.

View Article and Find Full Text PDF

Background: The progression of diabetic kidney disease (DKD) affects the patient's kidney glomeruli and tubules, whose normal functioning is essential for maintaining normal calcium (Ca) and phosphorus (P) metabolism in the body. The risk of developing osteoporosis (OP) in patients with DKD increases with the aggravation of the disease, including a higher risk of fractures, which not only affects the quality of life of patients but also increases the risk of death.

Aim: To analyze the risk factors for the development of OP in patients with DKD and their correlation with Ca-P metabolic indices, fibroblast growth factor 23 (FGF23), and Klotho.

View Article and Find Full Text PDF

Fetal Cartilage Progenitor Cells in the Repair of Osteochondral Defects.

JB JS Open Access

January 2025

Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky.

Background: Therapies for cartilage restoration are of great interest, but current options provide limited results. In salamanders, interzone (IZN) tissue can regenerate large joint lesions. The mammalian homolog to this tissue exists during fetal development and exhibits remarkable chondrogenesis in vitro.

View Article and Find Full Text PDF

Congenital hypogonadotropic hypogonadism (CHH) can cause delayed secondary sexual characteristics and contribute to juvenile osteoporosis, with multiple causative genes having been reported. We treated a 27-year-old man diagnosed with central hypogonadism, presenting with delayed secondary sexual characteristics and juvenile osteoporosis, using bone resorption inhibitors and testosterone therapy. Genetic testing revealed missense variants both in the fibroblast growth factor receptor 1 () and gonadotropin-releasing hormone receptor () genes, a combination that has not been previously reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!