Purposes: The objective of this study is to design a 3D biomechanical model of the female pelvic system to assess pelvic organ suspension theories and understand cystocele mechanisms.
Methods: A finite elements (FE) model was constructed to calculate the impact of suspension structure geometry on cystocele. The sample was a geometric model of a control patient's pelvic organs. The method used geometric reconstruction, implemented by the biomechanical properties of each anatomic structure. Various geometric configurations were simulated on the FE method to analyse the role of each structure and compare the two main anatomic theories.
Results: The main outcome measure was a 3D biomechanical model of the female pelvic system. The various configurations of bladder displacement simulated mechanisms underlying medial, lateral and apical cystocele. FE simulation revealed that pubocervical fascia is the most influential structure in the onset of median cystocele (essentially after 40 % impairment). Lateral cystocele showed a stronger influence of arcus tendineus fasciae pelvis (ATFP) on vaginal wall displacement under short ATFP lengthening. In apical cystocele, the uterosacral ligament showed greater influence than the cardinal ligament. Suspension system elongation increased displacement by 25 % in each type of cystocele.
Conclusions: A 3D digital model enabled simulations of anatomic structures underlying cystocele to better understand cystocele pathophysiology. The model could be used to predict cystocele surgery results and personalising technique by preoperative simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00404-016-4150-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!