A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural and sequence analysis of class A β-lactamases with respect to avibactam inhibition: impact of Ω-loop variations. | LitMetric

Structural and sequence analysis of class A β-lactamases with respect to avibactam inhibition: impact of Ω-loop variations.

J Antimicrob Chemother

Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA.

Published: October 2016

Background: There exists a significant diversity among class A β-lactamases and the proliferation of these enzymes is a significant medical concern due to the ability of some members to efficiently hydrolyse both extended-spectrum cephalosporins and carbapenems. Avibactam is a novel non-β-lactam β-lactamase inhibitor that, in combination with ceftazidime, has recently obtained regulatory approval in the USA. Although avibactam is known to efficiently inhibit key class A enzymes, the diversity of this enzyme family warranted a more complete investigation to understand the breadth of the potential spectrum of inhibition.

Methods: Using the known residues critical for avibactam binding, a thorough structural and sequence-based conservation analysis was performed across >650 class A enzymes. Several variations that had the potential to impact avibactam inhibition were observed and representative enzymes were cloned and expressed isogenically to evaluate the impact of these variations.

Results: The majority of the key residues involved in avibactam binding were well conserved across the different sub-families of class A β-lactamases, although some differences were observed. The differences in the Ω-loop of PER enzymes were found to impact the ability of avibactam to effectively protect β-lactams against hydrolysis. However, substitutions in a key hydrogen-bonding residue (N170) in some of the GES variants were found to not have a significant impact on avibactam inhibition.

Conclusions: Overall, the computational and experimental analyses suggest that the vast majority of class A β-lactamases should be well inhibited by avibactam, although a very small number of outliers exist.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkw248DOI Listing

Publication Analysis

Top Keywords

class β-lactamases
16
avibactam
9
avibactam inhibition
8
class enzymes
8
avibactam binding
8
impact avibactam
8
class
6
impact
5
enzymes
5
structural sequence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!