Endeavouring to repair and regenerate articular cartilage using cell sheets, we have previously established a co-culture system of chondrocytes and synoviocytes, and have reported the successful and rapid production of chondrocyte sheets. In the present study, to examine the effects of oxygen concentration on the chondrocyte sheets, we co-cultured human articular chondrocytes and human synoviocytes in 2%, 5% and 21% oxygen, and measured chondrocyte metabolic activity and proliferation activities under each condition for 14 days in culture. Layered chondrocyte sheets were also created under each condition and the proteoglycan (PG) level was compared with the gene expression of type I collagen (COL1), COL2, COL27, tissue metallopeptidase inhibitor 1 (TIMP1), fibronectin-1 (FN1), SRY-related HMG Box 9 (SOX9), aggrecan-1 (ACAN), integrin-α10 (ITGα10), matrix metalloproteinase 3 (MMP3), MMP13 and a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS5). Compared with 5% and 21% oxygen, the 2% condition caused significantly greater cell metabolic activity and proliferation (p < 0.05). The 2% condition produced a 10% greater PG level compared with 21% oxygen (p < 0.05). All conditions increased the expression of chondrocyte-specific genes, such as COL2, and were associated with low expression levels of catabolic factors, such as MMP3 and MMP13. These observations indicated that the specificity of the chondrocyte sheets was maintained under all conditions. The culture times did not differ between the 5% and 21% conditions. Compared with 21% oxygen, layered chondrocyte sheets rich in extracellular matrix were created 2.85 days earlier in 2% oxygen, which is similar to the level found in deep cartilage. Copyright © 2016 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.2192 | DOI Listing |
Regen Ther
June 2024
Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.
Introduction: Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas.
View Article and Find Full Text PDFBiomedicines
November 2024
Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain.
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells.
View Article and Find Full Text PDFTissue Eng Part A
November 2024
Department of Molecular Pharmaceutics, Health Sciences, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
Osteoarthritis, a degenerative disease of articular cartilage and the leading cause of disability, is preceded by acute cartilage injury in a significant proportion of cases. Current auto- and allograft interventions are limited by supply and variability in therapeutic efficacy, prompting interest in tissue engineering solutions. Cell sheet tissue engineering, a scaffold-free regenerative technique, has shown promise in preclinical and clinical trials across various cell types and diseases.
View Article and Find Full Text PDFEXCLI J
September 2024
Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland.
Cartilage
September 2024
Cell Sheet Tissue Engineering Center, Department of Molecular Pharmaceutics, Health Sciences, The University of Utah, Utah, USA.
Purpose: This study aimed to establish a combined histological assessment system of neo-cartilage outcomes and to evaluate variations in an established rat defect model treated with human juvenile cartilage-derived chondrocyte (JCC) sheets fabricated from various donors.
Methods: JCCs were isolated from the polydactylous digits of eight patients. Passage 2 (P2) JCC sheets from all donors were transplanted into nude rat chondral defects for 4 weeks (27 nude rats in total).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!