Due to their antimicrobial effects and their potential role as carbon sources, plant volatile organic compound (VOC) emissions play significant roles in determining the characteristics of the microbial communities that can establish on plant surfaces. Furthermore, epiphytic microorganisms, including bacteria and fungi, can affect plant VOC emissions in different ways: by producing and emitting their own VOCs, which are added to and mixed with the plant VOC blend; by affecting plant physiology and modifying the production and emission of VOCs; and by metabolizing the VOCs emitted by the plant. The study of the interactions between plant VOC emissions and phyllospheric microbiotas is thus of great interest and deserves more attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2016.06.005 | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France.
Unlabelled: MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of gene by the transposon was insufficient to explain these phenotypes.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea. Electronic address:
Volatile organic compounds (VOCs), such as toluene, are hazardous air pollutants that pose significant health and environmental risks. This study addresses remediation of toluene by developing a bifunctional nitrogen-doped biochar (NDB) activated with sodium hydroxide (NaOH), aimed at reducing toluene emissions through both adsorption and catalytic oxidation. A series of NDB samples were prepared via NaOH activation and pyrolysis at varying temperatures to optimize their adsorption capacity and catalytic performance.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China. Electronic address:
Given the leveling off of PM, the coordinated control of PM and O has become a critical challenge in the Beijing-Tianjin-Hebei (BTH) region. Here, we leveraged long-term observation data spanning 2013 to 2023 to reveal spatiotemporal heterogeneity, provincial spatial correlation, and driving factors influencing PM and O integrating Moran's Index and correlation analysis. Additionally, sensitivity experiments on precursor emission reduction focusing on both overall and key sources were conducted by combining WRF-CAMx models and the empirical kinetic modeling approach (EKMA), and synergistic emission reduction pathways were proposed during periods of combined pollution.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!