It is well known that the type and the availability of nitrogen have a great influence on the biosynthesis of certain mycotoxins. Here it is shown that some amino acids have no influence, some others strongly support and a third group inhibits the biosynthesis of ochratoxin (OTA) by Penicillium nordicum even in a complex medium, such as PDA. Arginine (Arg) is one of the strong OTA inhibiting amino acids. It was shown that Arg not only inhibits OTA in Penicillium but also citrinin (CIT) biosynthesis in Penicillium verrucosum, Penicillium expansum and Penicillium citrinum and alternariol (AOH), alternariol monomethylether (AME) and tenuazonic acid (TeA) biosynthesis in Alternaria alternata. The minimal inhibitory concentration of Arg differs depending on the mycotoxin and the species analysed. However, the OTA biosynthesis by P. verrucosum and P. nordicum was most sensitive. Growth, on the other hand, was much less affected by Arg. Urea, a metabolite of Arg catabolism, shows a similar inhibitory activity. In wheat medium containing 50mM Arg almost no OTA was produced by Penicillium, in contrast to plain wheat medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2016.06.036 | DOI Listing |
Biochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFPathogens
January 2025
Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
head blight (FHB) is a major disease affecting wheat production worldwide, caused by multiple species. In this study, seven strains were isolated from wheat fields across the Western Cape region of South Africa and identified through phylogenetic analysis. The strains were classified into three species complexes: the species complex (FGSC), species complex (FIESC), and species complex (FTSC).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
Neuroinflammation is involved in various neurological and neurodegenerative disorders in which the activation of microglia is one of the key factors. In this study, we examined the anti-inflammatory effects of the flavonoids nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) and eriodictyol (3',4',5,7-tetraxydroxyflavanone) on human microglia cell line activation stimulated by either lipopolysaccharide (LPS), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length Spike protein (FL-Spike), or the mycotoxin ochratoxin A (OTA). Human microglia were preincubated with the flavonoids (10, 50, and 100 µM) for 2 h, following which, they were stimulated for 24 h.
View Article and Find Full Text PDFFoods
January 2025
Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
Deoxynivalenol (DON), fumonisin B (FB), and zearalenone (ZEN) are typical fusarium mycotoxins that occur worldwide in foodstuffs, posing significant health hazards to humans and animals. Single and combined exposure of DON, FB, and ZEN leads to intestinal toxicity but the toxicology mechanism research is still limited. In this study, we explored the cytotoxicity effects of DON, FB, ZEN, and their combination in rat intestinal epithelial cell line 6 (IEC-6) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!