The force-production characteristics of 3 weight-lifting derivatives were examined by comparing the force-time curves of each exercise. Sixteen resistance-trained men performed repetitions of the hang power clean (HPC), jump shrug (JS), and hang high pull (HHP) on a force platform at several relative loads. Relative peak force (PF), relative impulse (IMP), peak rate of force development (PRFD), and time-normalized force-time curves of each exercise were compared. The JS produced greater PF than the HPC (P < .001, d = 1.38) and HHP (P < .001, d = 1.14), while there was no difference between the HPC and HHP (P = .338, d = 0.26). Similarly, the JS produced greater IMP than the HPC (P < .001, d = 0.52) and HHP (P = .019, d = 0.36). The HHP also produced greater IMP than the HPC (P = .040, d = 0.18). Finally, the JS produced greater PRFD than the HPC (P < .001, d = 0.73) and HHP (P = .001, d = 0.47), while there was no difference between the HPC and HHP (P = .192, d = 0.22). The HPC, JS, and HHP force-time profiles were similar during the first 75-80% of the movement; however, the JS produced markedly different force-time characteristics in the final 20-25% of the movement. The JS produced superior force-production characteristics, namely PF, IMP, and PRFD, as well as a unique force-time profile, compared with the HPC and HHP across several loads.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2016-0147 | DOI Listing |
The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA. Electronic address:
Stretch activation (SA), a delayed increase in force production following rapid muscle lengthening, is critical to the function of vertebrate cardiac muscle and insect asynchronous indirect flight muscle (IFM). SA enables or increases power generation in muscle types used in a cyclical manner. Recently, myosin isoform expression has been implicated as a mechanism for varying the amplitude of SA in some muscle types.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of School and Social Adaptation Studies, Faculty of Education, Université de Sherbrooke, Sherbrooke, Canada.
Background: The COVID-19 pandemic necessitated the rapid availability of evidence to respond in a timely manner to the needs of practice settings and decision-makers in health and social services. Now that the pandemic is over, it is time to put in place actions to improve the capacity of systems to meet knowledge needs in a situation of crisis. The main objective of this project was thus to develop an action plan for the rapid syntheses of evidence in times of health crisis in Quebec (Canada).
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Sci Total Environ
January 2025
Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.
Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!