In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu⁺ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu⁺ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962003PMC
http://dx.doi.org/10.3390/genes7070033DOI Listing

Publication Analysis

Top Keywords

subtilis cells
12
bacillus subtilis
8
mfd-dependent mutagenic
8
mfd
8
highly transcribed
8
transcribed regions
8
mutagenesis mfd
8
cells coordinating
8
mfd promotes
8
mutagenic
5

Similar Publications

A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.

View Article and Find Full Text PDF

Optimization and characterization studies of poultry waste valorization for peptone production using a newly Egyptian Bacillus subtilis strain.

AMB Express

January 2025

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.

Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.

View Article and Find Full Text PDF

Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.

Biophys Rep (N Y)

January 2025

UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.

Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells.

View Article and Find Full Text PDF

Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell.

Int J Mol Sci

December 2024

CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process.

View Article and Find Full Text PDF

Macrophage (Mph) polarization and functional activity play an important role in the development of inflammatory lung conditions. The previously widely used bimodal classification of Mph into M1 and M2 does not adequately reflect the full range of changes in polarization and functional diversity observed in Mph in response to various stimuli and disease states. Here, we have developed a model for the direct assessment of Mph from bronchial alveolar lavage fluid (BALF) functional alterations, in terms of phagocytosis activity, depending on external stimuli, such as exposure to a range of bacteria (, and ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!