Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME) groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523) to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID) segmentation analyses identified three distinct general health segments in our sample ranging from "very good" health (people of Indian origin), to "good" health (white British), and "poor" health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups), labelled "Mixed BME" in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness) ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in "Mixed BME". Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME communities since this can play an important role in helping address the health inequalities experienced by these groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962222 | PMC |
http://dx.doi.org/10.3390/ijerph13070681 | DOI Listing |
Heliyon
January 2025
Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics, Ofener Str. 16, Oldenburg, 26129, Lower Saxony, Germany.
Though numerous studies acknowledge the critical role played by green spaces (GS) in bolstering sustainability in various dimensions, a majority of these investigations primarily center on the ecological aspect and urban environments. Due to the multifaceted benefits of GSs, different categories and expectations of these spaces can be identified across disciplines. Hence, no single method exists for evaluating the success of GSs in promoting sustainability due to the multifaceted benefits and variety of expectations.
View Article and Find Full Text PDFESMO Open
January 2025
Evaluative Epidemiology Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
Health networking is in principle a formidable instrument to address many challenges posed by cancer, one of the two most common and most lethal non-communicable chronic diseases. The European Union (EU)'s Beating Cancer Plan foresaw the addition of new health networks to the four already existing European Reference Networks on rare cancers: the Network of Comprehensive Cancer Centres and several networks of expertise (NoEs), which will be shortly deployed on items as complex and poor-prognosis cancers, palliative care, survivorship, personalised primary and secondary prevention, omic technologies, hi-tech medical resources, and cancers in adolescents and young adults. The community of experts of the EU Joint Action, due to build such NoEs, has drafted this 'green paper', incorporating 13 open questions, in an effort to foster discussion on some open questions about health networking on cancer in the EU.
View Article and Find Full Text PDFAm J Bot
January 2025
Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Colombia.
Premise: The warmer and drier atmospheric conditions of urban environments challenge plant performance to different extents based on a species' ability to acclimate to the conditions. We evaluated the influence of species origin and thermal niche on the acclimation of leaf traits and shifts in the occupation of the functional trait space of 10 tree species growing in two environmentally contrasting sites in Bogotá, Colombia.
Methods: We measured six leaf traits per species in both sites and used generalized linear models to evaluate the influence of origin and thermal niche on acclimation of leaf traits and t-tests to analyze shifts in the occupation of the functional trait space.
Sci Rep
January 2025
PV Unit, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt.
The inadequate thermal insulation of the building envelope contributes significantly to the high power consumption of air conditioners in houses. A crucial factor in raising a building's energy efficiency involves utilizing bricks with high thermal resistance. This issue is accompanied by another critical challenge: recycling and disposing of waste in a way that is both economically and environmentally beneficial, including using it to fuel industrial growth, in order to reduce the harmful effects of waste on the environment as waste generation in our societies grows.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino (MC), Italy.
Sustainable soil management is essential to conserve soil biodiversity and its provision of vital ecosystem services. The EU Biodiversity Strategy for 2030 highlights the key role of organic farming and land protection in halting biodiversity loss, including edaphic biodiversity. To assess the effectiveness of the proposed measures, a 1-year study was conducted in spring 2022 to determine the soil quality of three organically managed agroecosystems and four sites for each: arable lands, olive groves, and vineyards in the Conero Park, using the arthropod-based Biological Soil Quality Index (QBS-ar) and also considering soil chemical-physical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!