Background: Parkinson disease (PD) is a neurological disease responsible for a considerable rate of mortality and morbidity in the society. Since the symptoms of the disease appear much later than the actual onset of neuron degeneration, a majority of cases remain undiagnosed until the manifestation of the symptoms.

Objectives: In order to investigate the existence of such susceptibility in the population, we analyzed Copy Number Variation (CNV) influences on PD genes in 1715 individuals from 12 different populations.

Results: Overall, 16 CNV-PD genes, 3 known to be causal and 13 associated, were found to be significantly enriched. PARK2, was under heavy burden with ~1% of the population containing CNV in the exonic region. The impact of these genes on the genome and disease pathway was analyzed using several genome analysis tools. Protein interaction network of CNV-PD genes revealed a complex interaction of molecules forming a major hub by the α-Synuclein, whose direct interactors, LRRK2, PARK2 and ATP13A2 are under CNV influence.

Conclusions: We hypothesize that CNVs may not be the initiating event in the pathogenesis of PD and remain latent until additional secondary hits are acquired and also propose novel genes that may fall under the PD pathway which contribute in pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01616412.2016.1204105DOI Listing

Publication Analysis

Top Keywords

copy number
8
parkinson disease
8
cnv-pd genes
8
disease
6
genes
6
high-resolution arrays
4
arrays reveal
4
reveal burden
4
burden copy
4
number variations
4

Similar Publications

Background: Familial adenomatous polyposis (FAP) is an autosomal dominant colorectal tumour syndrome characterised by the formation of multiple adenomatous polyps throughout the colon. It is important to understand the extracolonic phenotype that characterizes FAP. Most previous case reports of patients with both FAP and intellectual disability (ID) have described deletions in all or part of chromosome 5q, including the APC locus.

View Article and Find Full Text PDF

Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.

View Article and Find Full Text PDF

Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).

Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.

View Article and Find Full Text PDF

Segmental duplications (SDs) contribute significantly to human disease, evolution and diversity but have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies (from 85 samples representing 38 Africans and 47 non-Africans) in which the majority of autosomal SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms and sex chromosomes, we identify 173.

View Article and Find Full Text PDF

The sex chromosomes contain complex, important genes impacting medical phenotypes, but differ from the autosomes in their ploidy and large repetitive regions. To enable technology developers along with research and clinical laboratories to evaluate variant detection on male sex chromosomes X and Y, we create a small variant benchmark set with 111,725 variants for the Genome in a Bottle HG002 reference material. We develop an active evaluation approach to demonstrate the benchmark set reliably identifies errors in challenging genomic regions and across short and long read callsets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!