Azetidines fitted with a 3-hydroxypropyl side chain at the 2-position undergo intramolecular N-alkylation after activation of the primary alcohol, and the produced 1-azonia-bicyclo[3.2.0]heptane is opened by different nucleophiles (cyanide, azide, or acetate anions) to produce mixtures of ring expanded pyrrolidines and azepanes, or a unique type of compound. Distribution of produced five- or seven-membered rings depends on the substitution pattern on the azetidine ring and on its side chain, together with the nature of the nucleophile used in the expansion process. Observed regioselectivities for nucleophilic opening are rationalized by quantum mechanical DFT calculations and are in good agreement with experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.6b01325 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!