Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The aim of this study is to identify independent pre-transplant cancer risk factors after kidney transplantation and to assess the utility of G-chart analysis for clinical process control. This may contribute to the improvement of cancer surveillance processes in individual transplant centers.
Patients And Methods: 1655 patients after kidney transplantation at our institution with a total of 9,425 person-years of follow-up were compared retrospectively to the general German population using site-specific standardized-incidence-ratios (SIRs) of observed malignancies. Risk-adjusted multivariable Cox regression was used to identify independent pre-transplant cancer risk factors. G-chart analysis was applied to determine relevant differences in the frequency of cancer occurrences.
Results: Cancer incidence rates were almost three times higher as compared to the matched general population (SIR = 2.75; 95%-CI: 2.33-3.21). Significantly increased SIRs were observed for renal cell carcinoma (SIR = 22.46), post-transplant lymphoproliferative disorder (SIR = 8.36), prostate cancer (SIR = 2.22), bladder cancer (SIR = 3.24), thyroid cancer (SIR = 10.13) and melanoma (SIR = 3.08). Independent pre-transplant risk factors for cancer-free survival were age <52.3 years (p = 0.007, Hazard ratio (HR): 0.82), age >62.6 years (p = 0.001, HR: 1.29), polycystic kidney disease other than autosomal dominant polycystic kidney disease (ADPKD) (p = 0.001, HR: 0.68), high body mass index in kg/m2 (p<0.001, HR: 1.04), ADPKD (p = 0.008, HR: 1.26) and diabetic nephropathy (p = 0.004, HR = 1.51). G-chart analysis identified relevant changes in the detection rates of cancer during aftercare with no significant relation to identified risk factors for cancer-free survival (p<0.05).
Conclusions: Risk-adapted cancer surveillance combined with prospective G-chart analysis likely improves cancer surveillance schemes by adapting processes to identified risk factors and by using G-chart alarm signals to trigger Kaizen events and audits for root-cause analysis of relevant detection rate changes. Further, comparative G-chart analysis would enable benchmarking of cancer surveillance processes between centers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939933 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158732 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!