For spintronic devices excited by a sudden magnetic or optical perturbation, the torque acting on the magnetization plays a key role in its precession and damping. However, the torque itself can be a dynamical quantity via the time-dependent anisotropies of the system. A challenging problem for applications is then to disentangle the relative importance of various sources of anisotropies in the dynamical torque, such as the dipolar field, the crystal structure or the shape of the particular interacting magnetic nanostructures. Here, we take advantage of a range of colloidal cobalt ferrite nanocubes assembled in 2D thin films under controlled magnetic fields to demonstrate that the phase, ϕPrec, of the precession carries a strong signature of the dynamical anisotropies. Performing femtosecond magneto-optics, we show that ϕPrec displays a π-shift for a particular angle θH of an external static magnetic field, H. θH is controlled with the cobalt concentration, the laser intensity, as well as the interparticle interactions. Importantly, it is shown that the shape anisotropy, which strongly departs from those of equivalent bulk thin films or individual noninteracting nanoparticles, reveals the essential role played by the interparticle collective effects. This work shows the reliability of a noninvasive optical approach to characterize the dynamical torque in high density magnetic recording media made of organized and interacting nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981894 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.6b02618 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!