Catalytic syntheses of CNTs on the pristine Ti mesh, the pristine Ti plate and the etched Ti plate have been conducted using thermal chemical vapor deposition (CVD) with Fe catalysts. Surface of the pristine Ti plate was etched in a sulfuric acid (H₂SO₄) solution to facilitate the uniform dispersion of Fe catalysts. The surface of Ti substrates, the distribution and the composition of catalysts, and the structure and dispersion of the CNTs were examined using Scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), electron probe micro-analysis (EPMA) and Micro-Raman spectroscopy. Fe catalysts were dispersed uniformly on the surface of the etched Ti plate indicating that Surface modification by etching was effective. CNTs on the pristine Ti mesh and the etched Ti plate are more densely populated and have smaller diameters than CNTs on the pristine Ti plate. These results can be attributed to smaller Fe catalysts more homogeneously distributed on the pristine Ti mesh and the etched Ti plate. The calculated I(G)/I(D) ratios of 1.02 and 0.97 for CNTs on the pristine Ti mesh and the etched Ti plate, respectively, indicate a high degree of structural disorders on CNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2016.10722DOI Listing

Publication Analysis

Top Keywords

etched plate
20
cnts pristine
16
pristine mesh
16
pristine plate
12
mesh etched
12
thermal chemical
8
chemical vapor
8
vapor deposition
8
plate
8
plate etched
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!