Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The method Discrete Dipole Approximation (DDA) is used to calculate the extinction spectra and field distribution of three types of dimers. In the paper we provide a systematic analysis of the optical response of different nanoscopic dimer structures with relatively small gap distances. A description is given about how the energy and excitation cross sections of dimer plasmons depend on nanoparticle separation. Resonance peaks of dimers show red-shift compared with single nanoparticle. Dimers formed by different single particle display distinct optical response. Interaction junctions in dimers can serve as hot spots for field enhancement. Field distribution in gaps made of two flat planes is nearly continuous. Changing gaps between two particles in dimers can tune the resonance wavelength effectively as well as different particle ensembles. Existence of sharp corners can attract and change field distribution. It is not effective volume but the effective cross-section that dominates the extinction efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.10649 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!