A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of Oxidation States with Heating on Charge Transport of the Graphene Nanoribbon. | LitMetric

In this paper, we present a study based on extended Hückel (ETH) and the Green function of the electron transport in a graphenenanoribbon with a nanopore oxidized in the middle. We con- sider several types of oxidation:hydroxyl, carboxyl and ketone groups adsorbed in edges, pore and surface of the riddon. The results indicate that nanoribbons with medium and high oxidation are more thermally stable than the low oxidation nanoribon that shows greater sensitivity at 120 °C. Finally, Ohmic and Negative Differential Resistance (NDR) were obtained from I(V) curves, thus was possible determine the current peaks and threshold voltages (V(Th1) < V(Th2) < V(Th3) < V(Th4)), which correspond to quantum transport of the nanoribbon not oxidized, high-oxy, med-oxy and low-oxy, respectively, so creating two nanoconstrictions as well as two regions of quantum confinement.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2016.10678DOI Listing

Publication Analysis

Top Keywords

study oxidation
4
oxidation states
4
states heating
4
heating charge
4
charge transport
4
transport graphene
4
graphene nanoribbon
4
nanoribbon paper
4
paper study
4
study based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!