The epithelial-to-mesenchymal transition (EMT) enables cells of epithelial phenotype to become motile and change to a migratory mesenchymal phenotype. EMT is known to be a fundamental requisite for tissue morphogenesis, and EMT-related pathways have been described in cancer metastasis and tissue fibrosis. Epithelial structures are marked by the presence of a sheet-like extracellular matrix, the basement membrane, which is assembled from two major proteins, laminin and collagen type IV. This specialized matrix is essential for tissue function and integrity, and provides an important barrier to the potential pathogenic migration of cells. The profound phenotypic transition in EMT involves the epithelial cells disrupting the basement membrane. Matrix metalloproteinases (MMPs) are known to cleave components of basement membranes, but MMP-basement membrane crosstalk during EMT in vivo is poorly understood. However, MMPs have been reported to play a role in EMT-related processes and a variety of basement membrane fragments have been shown to be released by specific MMPs in vitro and in vivo exhibiting distinct biological activities. This review discusses general considerations regarding the basement membrane in the context of EMT, a possible role for specific MMPs in EMT and highlights biologically active basement membrane fragments liberated by MMPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejcb.2016.06.002 | DOI Listing |
Cell Tissue Res
January 2025
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.
View Article and Find Full Text PDFDev Biol
January 2025
Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, UK.
Reichert's membrane (RM) is a basement membrane of gigantic proportions that surrounds the mammalian embryo following implantation. It is part of the parietal yolk sac, which originates from the wall of the preimplantation blastocyst. RM persists from implantation to birth in rodents and analogous structures occur in other mammals, including primates.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark.
Blood-based extracellular matrix (ECM) fragments have been identified as potential pharmacologic biomarkers in spondyloarthritis and diagnostic biomarkers in psoriatic arthritis and psoriasis vulgaris. This study aimed to explore whether ECM fragments can differentiate patients with psoriasis from healthy controls (HC) and determine their potential as biomarkers for response to treatment in psoriasis. The study population included 59 patients with moderate to severe psoriasis, not receiving systemic anti-psoriatic treatment at inclusion, and 52 HC matched by age, sex, and BMI.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!