Phosphorylation has been generally thought to activate the SR family of splicing factors for efficient splice-site recognition, but this idea is incompatible with an early observation that overexpression of an SR protein kinase, such as the CDC2-like kinase 1 (CLK1), weakens splice-site selection. Here, we report that CLK1 binds SR proteins but lacks the mechanism to release phosphorylated SR proteins, thus functionally inactivating the splicing factors. Interestingly, CLK1 overcomes this dilemma through a symbiotic relationship with the serine-arginine protein kinase 1 (SRPK1). We show that SRPK1 interacts with an RS-like domain in the N terminus of CLK1 to facilitate the release of phosphorylated SR proteins, which then promotes efficient splice-site recognition and subsequent spliceosome assembly. These findings reveal an unprecedented signaling mechanism by which two protein kinases fulfill separate catalytic features that are normally encoded in single kinases to institute phosphorylation control of pre-mRNA splicing in the nucleus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941815PMC
http://dx.doi.org/10.1016/j.molcel.2016.05.034DOI Listing

Publication Analysis

Top Keywords

phosphorylation control
8
control pre-mrna
8
pre-mrna splicing
8
splicing factors
8
efficient splice-site
8
splice-site recognition
8
protein kinase
8
release phosphorylated
8
phosphorylated proteins
8
clk1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!