Unlabelled: We have previously shown (i) that the cystic fibrosis transmembrane regulator (CFTR) locates to lipid raft-like microdomains of epithelial cells upon TNF-α proinflammatory stimulation; and (ii) that TNF-α increases the membrane localization and the channel function of F508del-mutated CFTR. In the present work, we hypothesized that CFTR mutations modify the proteome of lipid rafts in the same proinflammatory conditions. We prepared lipid rafts from HeLa cells transfected with either wild-type or F508del-CFTR and incubated for 10min with 100U/mL of TNF-α. Proteins were extracted, trypsin digested, and peptides analyzed by high resolution MS. Proteins were quantified by a stable isotope labeling with amino acids in cell culture approach. Out of the 22 proteins differentially recruited in lipid rafts after proinflammatory exposure, 17 were increased in F508del cells with respect to wild-type, including two G-protein coupled receptors, three anion transporters, and one cell surface mucin. In both HeLa and bronchial epithelial cells we confirmed that G-protein coupled receptor 5A relocates to lipid rafts along with F508del-CFTR after TNF-α treatment. These results could enlighten the cross-talk between CFTR and TNF-α and its impact on the cell response to proinflammatory challenge.
Biological Significance: CFTR mutations are at the origin of cystic fibrosis. The latter disease is characterized, among other symptoms, by a defective management of infection and inflammation in the airways. Short exposure to the proinflammatory cytokine TNF-α targets mutated CFTR to the plasma membrane and increases its chloride channel activity. The results hereby presented show a substantial modification of the lipid raft proteome in the same conditions, and may enlighten the effect of this cytokine and the role of CFTR in the cell response to inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2016.07.003 | DOI Listing |
Biomolecules
January 2025
Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy.
Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes.
View Article and Find Full Text PDFACS Sens
January 2025
Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
Intracellular morphological apical-basal polarity, regulated by conserved polarity proteins, plays a crucial role in cell migration and metastasis. In this study, using a genetically encoded Förster resonance energy transfer (FRET) biosensor to visually present the spatiotemporal stress state between the lipid rafts on the membrane and the linked actin, we first provide the evidence for the existence of intrinsic apical-basal stress polarity in tumor cells and demonstrate that this polarity is a prerequisite for the formation of flow-induced front-back stress polarity. Interestingly, our study revealed that the front-back stress polarity disappeared upon the disruption of intrinsic apical-basal stress discrepancy, resulting in a large attenuated cell migration activity reduced from 76.
View Article and Find Full Text PDFCell Death Dis
January 2025
Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany.
Arachidonate 15-lipoxygenase type B (ALOX15B) peroxidises polyunsaturated fatty acids to their corresponding fatty acid hydroperoxides, which are subsequently reduced into hydroxy-fatty acids. A dysregulated abundance of these biological lipid mediators has been reported in the skin and blood of psoriatic compared to healthy individuals. RNAscope and immunohistochemistry revealed increased ALOX15B expression in lesional psoriasis samples.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland. Electronic address:
The connection between the F-actin and ribosome docking to the PM has been reported, but the exact mechanism has remained unclear. Previously, we discovered that gelsolin (GSN) forms complexes with numerous ribosomal proteins, including ribosomal protein SA (RPSA). Now, we have unraveled the mechanism of ribosome recruitment to the lipid nanodomains of the PM, with GSN playing a pivotal role in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!