Porcine enteric coronaviruses (CoVs) cause severe disease in the porcine herds worldwide, leading to important economic losses. Despite the knowledge of these viruses since the 1970s, vaccination strategies have not been implemented, leading to continuous re-emergence of novel virulent strains. Live attenuated vaccines historically have been the most efficient. We consider that the new trend is the development of recombinant vaccines by using reverse genetics systems to engineer attenuated viruses, which could be used as effective and safe modified live vaccine candidates. To this end, host cell signaling pathways influencing porcine CoV virulence should be identified. Similarly, the identity of viral proteins involved in the modulation of host cell pathways influencing CoV pathogenesis should be analyzed. With this information, and using reverse genetics systems, it is possible to design viruses with modifications in the viral proteins acting as virulence factors, which may lead to attenuated viruses and, therefore, vaccine candidates. In addition, novel antiviral drugs may be developed once the host cell pathways and the molecular mechanism affecting porcine CoV replication and virulence are known. This review is focused in the host cell responses to enteric porcine CoV infection and the viral proteins involved in pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159199 | PMC |
http://dx.doi.org/10.1016/j.virusres.2016.07.003 | DOI Listing |
Sci Rep
January 2025
Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.
Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.
View Article and Find Full Text PDFCytokine Growth Factor Rev
December 2024
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address:
Viruses have evolved to strategically exploit cellular signaling pathways to evade host immune defenses. GM-CSF signaling plays a pivotal role in regulating inflammation, activating myeloid cells, and enhancing the immune response to infections. Due to its central role in the immune system, viruses may target this pathway to further establish infection.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:
Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.
View Article and Find Full Text PDFEfficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Dana-Farber Cancer Institute, Division of Transplantation and Cellular Therapy, Boston, MA. Electronic address:
Background: Post-transplant cyclophosphamide (PTCy) is a commonly used graft-vs-host disease (GVHD) prophylaxis, particularly in the setting of haploidentical (haplo) hematopoietic cell transplantation (HCT). The rate of graft failure has been reported to be as high as 12-20% in haplo-HCT recipients using PTCy. The objective of this study was to determine if donor type influenced the risk of late graft failure following RIC HCT using PTCy-based GVHD prophylaxis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!