This work demonstrates the excellent potential of carboxyl-functionalized graphene oxide (GO-COOH) composites to form biocompatible surfaces on sensing films for use in surface plasmon resonance (SPR)-based immunoaffinity biosensors. Carboxyl-functionalization of graphene carbon can modulate its visible spectrum, and can therefore be used to improve and control the plasmonic coupling mechanism. The binding properties of the molecules between a sensing film and a protein were elucidated at various flow rates of those molecules. The bio-specific binding interaction among the molecules was investigated by performing an antigen and antibody affinity immunoassay. The results thus obtained revealed that the overall affinity binding value, K, of the Au/GO-COOH chip can be significantly enhanced by up to ∼5.15 times that of the Au/GO chip. With respect to the shifts of the SPR angles of the chips, the affinity immunoassay interaction at a BSA concentration of 1μg/ml for an Au/GO-COOH chip, an Au/GO chip and a traditional SPR chip are 35.5m°, 9.128m° and 8.816m°, respectively. The enhancement of the antigen-antibody interaction of the Au/GO-COOH chip cause this chip to become four times as sensitive to the SPR angle shift and to have the lowest antibody detection limit of 0.01pg/ml. These results indicate the potential of the chip in detecting specific proteins, and the development of real-time in vivo blood analysis and diagnosis based on cancer tumor markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2016.06.073 | DOI Listing |
Biosens Bioelectron
March 2017
Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Science and Technology, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Road, Taipei 11677, Taiwan.
This work demonstrates the excellent potential of carboxyl-functionalized graphene oxide (GO-COOH) composites to form biocompatible surfaces on sensing films for use in surface plasmon resonance (SPR)-based immunoaffinity biosensors. Carboxyl-functionalization of graphene carbon can modulate its visible spectrum, and can therefore be used to improve and control the plasmonic coupling mechanism. The binding properties of the molecules between a sensing film and a protein were elucidated at various flow rates of those molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!