The expanding production and usage of commercial silver nanoparticles (AgNPs) will inevitably increase their environmental release, with sediments as a substantial sink. However, little knowledge is available about the potential impacts of AgNPs on freshwater sediment microbial communities, as well as the interactions between microbial communities and biogeochemical factors in AgNPs polluted sediment. To address these issues, two different sediments: a eutrophic freshwater sediment and an oligotrophic freshwater sediment, were exposed to 1 mg/g of either AgNO, uncoated AgNPs (35-nm and 75-nm), or polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) (30-50 nm) for 45 days. High-throughput sequencing of 16S ribosomal ribonucleic acid (16S rRNA) genes using the Illumina MiSeq platform was conducted to evaluate the effects of Ag addition on bacterial community composition. Moreover, sediment microbial biomass and activity were assessed by counting cultivable bacterial number and determining enzyme activities. During the 45-day exposure, compared with no amendment control, some treatments had resulted in significant changes and alterations of sediment biomass or bacterial enzyme activities shortly. While the microbial components at phylum level were rarely affected by AgNPs addition, and as confirmed by the statistical analysis with two-factor analysis of similarities (ANOSIM), there were no significant differences on bacterial community structure across the amended treatments. Redundancy analysis further demonstrated that chemical parameters acid-volatile sulfide (AVS) and simultaneously extracted silver (SE-Ag) in sediment significantly structured the overall bacterial community in sediments spiked with various silver species. In summary, these findings suggested that the ecotoxicity of AgNPs may be attenuated by the transformation under complex environmental conditions and the self-adaption of sediment microbial communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2016.06.071 | DOI Listing |
Chin Med
January 2025
Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.
View Article and Find Full Text PDFPediatr Res
January 2025
Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
Background: Despite prior observational studies suggesting a link between gut microbiota to Kawasaki disease (KD), these findings remain debated. This study aimed to assess the association between gut microbiota and KD on a genetic level using a two-sample Mendelian randomization (MR) analysis.
Methods: This two-sample MR analysis utilized summary statistics from the largest genome-wide association study meta-analysis on gut microbiota conducted by the MiBioGen consortium.
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!